Effects of Crack Resistance Properties of Ozone-treated Carbon Fibers-reinforced Nylon-6 Matrix Composites

탄소섬유의 오존처리가 나일론6 기지 복합재료의 크랙저항에 미치는 영향

  • Han, Woong (R&D Center, Korea Institute of Carbon Convergence Technology) ;
  • Choi, Woong-Ki (R&D Center, Korea Institute of Carbon Convergence Technology) ;
  • An, Kay-Hyeok (R&D Center, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Hong-Gun (Department of Carbon Fusion Engineering, Jeonju University) ;
  • Kang, Shin-Jae (R&D Center, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byung-Joo (R&D Center, Korea Institute of Carbon Convergence Technology)
  • 한웅 (한국탄소융합기술원 연구개발본부) ;
  • 최웅기 (한국탄소융합기술원 연구개발본부) ;
  • 안계혁 (한국탄소융합기술원 연구개발본부) ;
  • 김홍건 (전주대학교 탄소융합공학과) ;
  • 강신재 (한국탄소융합기술원 연구개발본부) ;
  • 김병주 (한국탄소융합기술원 연구개발본부)
  • Published : 2013.08.10

Abstract

In this work, the effects of ozone treatments on mechanical interfacial properties of carbon fibers-reinforced nylon-6 matrix composites were investigated. The surface properties of ozone treated carbon fibers were studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mechanical interfacial properties of the composites were investigated using critical stress intensity factor ($K_{IC}$). The cross-section morphologies of ozone-treated carbon fiber/nylon-6 composites were observed by scanning electron microscope (SEM). As a result, $K_{IC}$ of the ozone-treated carbon fibers-reinforced composites showed higher values than those of as-received carbon fibers-reinforced composites due the enhanced $O_{1s}/C_{1s}$ ratio of the carbon fiber by the ozone treatments. This result concludes that the mechanical interfacial properties of nylon-6 matrix composites can be controlled by suitable ozone treatments on the carbon fibers.

본 실험에서는 탄소섬유의 오존처리가 탄소섬유 강화 나일론6 매트릭스 복합 재료의 기계적 계면 특성에 미치는 영향을 관찰하였다. 오존처리는 농도에 따라 각각 30 min씩 처리하였으며, 오존처리된 탄소섬유의 표면 특성은 적외선 분광법(Fourier transform infrared spectroscopy; FT-IR)과 X선 광전자 분광법(X-ray photoelectron spectroscopy; XPS)으로 측정하였다. 기계적 계면 물성은 임계응력 세기 인자(Critical stress intensity factor; $K_{IC}$)를 통하여 알아보았으며, 파단실험 후 파단면은 주사전자현미경을 통해 관찰하였다. 실험결과, 탄소섬유를 오존처리함에 따라 탄소섬유 표면의 $O_{1s}/C_{1s}$ 비율이 증가하였고, 이는 탄소섬유 표면의 산소관능기 발달에 따른 것으로 보여진다. 또한, 오존처리된 탄소섬유 강화 복합재료는 미처리된 탄소섬유강화 복합재료보다 높은 $K_{IC}$와 값을 보여주었다. 이러한 결과는 탄소섬유의 오존처리가 탄소섬유와 나일론6 기지 사이의 계면결합력의 증대를 유도하여 복합재료의 기계적 계면강도가 증가된 것으로 판단된다.

Keywords

References

  1. J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed., 95, Marcel Dekker, New York (1990).
  2. M. M. Schwartz, Composite Materials Handbook, 2nd ed., 2, McGraw-Hill, New York (1992).
  3. W. S. Smith, Engineered Materials Handbook, 1, 15, ASM International, Ohio (1987).
  4. S. J. Park, M. H. Kim, J. R. Lee, and S. Choi, J. Colloid Interface Sci., 228, 287 (2000). https://doi.org/10.1006/jcis.2000.6953
  5. S. J. Park, J. S. Oh, and D. H. Suh, J. Korean Ind. Eng. Chem., 14, 586 (2003).
  6. R. S. Bauer, Epoxy Resin Chemistry, ACS Advances in Chemistry Series No. 114, American Chemical Society, Wacshington DC (1979).
  7. L. Weitzsacker, X. Ming, and L. T. Drzal, Surf. Interface Anal., 25, 53 (1997). https://doi.org/10.1002/(SICI)1096-9918(199702)25:2<53::AID-SIA222>3.0.CO;2-E
  8. S. J. Park, Y. S. Jang, and K. Y. Rhee, J. Colloid Interface Sci., 254, 383 (2002).
  9. H. Lee and K. Nevile, Handbook of Epoxy Resins, McGraw-Hill, New York (1967).
  10. M. H. Han, J. M. Yun, H. I. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 18, 752 (2012). https://doi.org/10.1016/j.jiec.2011.11.122
  11. A. Galiguzov, A. Malakho, V. Kulakov, A. Kenigfest, E. Kramarenko, and V. Avdeev, Carbon lett., 14, 22 (2013). https://doi.org/10.5714/CL.2012.14.1.022
  12. H. L. Chiang, C. P. Huang, and P. C. Chiang, Chemosphere., 47, 257 (2002). https://doi.org/10.1016/S0045-6535(01)00215-6
  13. R. H. Bradley and F. Le Goff, Carbon, 40, 1173 (2002). https://doi.org/10.1016/S0008-6223(01)00267-6
  14. X. Fu, W. Lu, and D. D. L. Chung, Carbon, 36, 1337 (1998). https://doi.org/10.1016/S0008-6223(98)00115-8
  15. J. R. Fried, Polymer Science and Technology, Prentice Hall (1995).
  16. P. K. Mallick, Fiber-Reinforced Composites; Materials, Manufacturing, and Design, Marcel Dekker, New York and Basel (1998).
  17. S. D. Gardner, C. S. K. Singamsetty, G. L. Booth, G. R. He, and C. U. Pittman JR, Carbon, 33, 578 (1995).
  18. W. P. Yang, D. Costa, and P. Marcus, J. Electrochem. Soc., 141, 2663 (1994).
  19. O. S. Ward and H. Idriss, Appl. Surf. Sci., 270, 272 (2013). https://doi.org/10.1016/j.apsusc.2012.12.173
  20. X. Chen, M. Farber, Y. Gao, I. Kulaots, E. M. Suuberg, and R. H. Hurt, Carbon, 41, 1489 (2003). https://doi.org/10.1016/S0008-6223(03)00053-8
  21. Y. Q. Wang, H. Viswanathan, A. A. Audi, and P. M. A. Sherwood, Chem. Mater., 12, 1100 (2000). https://doi.org/10.1021/cm990734e
  22. S. J. Park and B. J. Kim, Mater. Sci. Eng., A, 408, 269 (2005). https://doi.org/10.1016/j.msea.2005.08.129
  23. A. S. Sarac, S. A. M. Tofail, M. Serantoni, J. Henry, V. J. Cunnane, and J. B. McMonagle, Appl. Surf. Sci., 222, 148 (2004). https://doi.org/10.1016/j.apsusc.2003.08.008
  24. K. Shibagaki and S. Motojima, Carbon, 38, 2087 (2000). https://doi.org/10.1016/S0008-6223(00)00065-8
  25. B. J. Kim and S. J. Park, J. Colloid Interf. Sci., 311, 311 (2007). https://doi.org/10.1016/j.jcis.2007.02.059
  26. H. J. Kim, Y. J. Park, J. H. Choi, H. S. Han, and Y. T. Hong, J. Ind. Eng. Chem., 15, 23 (2009). https://doi.org/10.1016/j.jiec.2008.08.016
  27. M. H. Baek, W. C. Jung, J. W. Yoon, J. S. Hong, Y. S. Lee, and J. K. Suh, Ind. Eng. Chem., 19, 469 (2013). https://doi.org/10.1016/j.jiec.2012.08.026
  28. S. J. Park in "Interfacial Forces and Fields: Theory and Applications" (J. P. Hsu Ed.), Chap. 9, 385, Marcel Dekker, NY (1999).
  29. S. J. Park, M. K. Seo, and K. Y. Rhee, Mater. Sci. Eng., A, 356, 219 (2003). https://doi.org/10.1016/S0921-5093(03)00134-5
  30. K. E. Choi and M. K. Seo, Carbon lett., 14, 58 (2013). https://doi.org/10.5714/CL.2012.14.1.058
  31. S. B. Rho and M. A. Lim, Polymer (Korea), 23, 662 (1999).