DOI QR코드

DOI QR Code

Use of Dried Stoned Olive Pomace in the Feeding of Lactating Buffaloes: Effect on the Quantity and Quality of the Milk Produced

  • Terramoccia, S. (Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro per la Produzione delle Carni ed il Miglioramento Genetico) ;
  • Bartocci, S. (Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro per la Produzione delle Carni ed il Miglioramento Genetico) ;
  • Taticchi, A. (Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Universita degli Studi di Perugia) ;
  • Di Giovanni, S. (Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro per la Produzione delle Carni ed il Miglioramento Genetico) ;
  • Pauselli, M. (Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita di Perugia) ;
  • Mourvaki, E. (Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Universita di Perugia) ;
  • Urbani, S. (Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Universita degli Studi di Perugia) ;
  • Servili, M. (Dipartimento di Scienze Economico-Estimative e degli Alimenti, Sezione di Tecnologie e Biotecnologie degli Alimenti, Universita degli Studi di Perugia)
  • Received : 2012.11.08
  • Accepted : 2013.01.17
  • Published : 2013.07.01

Abstract

Dried stoned olive pomace (DSOP) was administered to dairy water buffaloes, and their productive performance and milk composition were analysed. Sixteen pluriparous lactating buffaloes were divided into two uniform groups (control and experimental), taking into consideration the following parameters: milk production (2,192 and 2,102 kg) and duration of lactation (254 and 252 d) of the previous year, distance from calving (51 and 43 d), milk production (9.71 and 10.18 kg/d), body condition score (BCS) (6.44 and 6.31) and weight (617 and 653 kg) at the beginning of the trial. Both diets had the same formulation: second cut alfalfa hay 20%, corn silage 42%, concentrate 38% but the two concentrates differed in their formulation, the experimental one contained 15.50% of DSOP as fed. The employed DSOP showed high amounts of secoiridoids, such as 3,4-dihydroxyphenylethanol (3,4-DHPEA) (1.2 g/kg DM), 3,4-dihydroxyphenylethanol-elenolic acid di-aldehyde (3,4-DHPEA-EDA) (12.6 g/kg DM), p-hydroxyphenylethanol-elenolic acid di-aldehyde (p-HPEA-EDA) (5.6 g/kg DM) and lignans, which are known to be powerful bioactive compounds. The control diet had an energy-protein content of 0.86 Milk FU/kg DM and 143.3 g/kg DM of crude protein, whereas the experimental diet of 0.87 Milk FU/kg DM and 146.6 g/kg DM of crude protein. Each animal of the two groups received 17 kg DM/d and each buffalo of the experimental group, by way of the concentrate, ingested 1.05 kg DM/d of DSOP. The trial lasted 40 days. No significant difference was found between the BCS (6.41 and 6.53), live weight (625.93 and 662.50 kg) and milk production (9.69 and 10.08 kg/d) of the two groups, as was the case for fat, protein, lactose, pH and coagulating parameters of the two milks. The milk fat of the experimental group had a significantly higher content of total tocopherols (10.45 vs $8.60{\mu}g/g$, p<0.01) and retinol (3.17 vs $2.54{\mu}g/g$, p<0.01). The content of the reactive substances with tiobarbituric acid (TBARs) was significantly lower in the milk fat of the experimental group (12.09 vs $15.05{\mu}g$ MDA/g, p<0.01). The acid content of the milk fat of the experimental group had a significantly higher content (p<0.05) of C18:0 and of $C18:3{\omega}6$. LC-MS/MS analysis showed the presence of 3,4-DHPEA ($36.0{\mu}g/L$) in the milk of the DSOP-fed buffaloes, while other phenols were not found. DSOP, in the quantity utilized, can be used in the feeding of the lactating buffalo; the dietetic-nutritional characteristics of the milk are improved due to a greater contribution of tocopherols, retinol and the presence of hydroxytyrosol.

Keywords

References

  1. Altiero, V., L. Moio, and F. Addeo. 1989. Estimate of mozzarella yield based on the fat and protein content of buffalo milk. Sci. Tec. Latt.- Casearia 40:425-433.
  2. AOAC. 1995. Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington, DC.
  3. ASPA. 1995. Method of milk analysis of the main zootechnical species. Universita degli Studi di Perugia, Italy.
  4. Baldioli, M., M. Servili, G. Perretti, and G. Montedoro. 1996. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 73:1589-1593. https://doi.org/10.1007/BF02523530
  5. Bartocci, S., S. Terramoccia, and C. Tripaldi. 2006. The utilization of a high level energy/protein diet for lactating Mediterranean buffaloes: intake capacity and effects on quanti-qualitative milk parameters. Livest. Sci. 99:211-219. https://doi.org/10.1016/j.livprodsci.2005.06.015
  6. Bartocci, S., C. Tripaldi, and S. Terramoccia. 2002. Characteristic of foodstuffs and diet, and quanti-qualitative milk parameters of Mediterranean buffaloes bred in Italy using the intensive system. An estimate of the nutritional requirements of buffalo herds lactating or dry. Livest. Prod. Sci. 77:45-58. https://doi.org/10.1016/S0301-6226(02)00022-2
  7. Borghese, A., and M. Mazzi. 2005. Buffalo population and strategies in the world. In Buffalo Production and Research, edn. FAO, Rome, pp. 1-39.
  8. Campanile, G., C. De Filippo, R. Di Palo, W.Taccone, and L. Zicarelli. 1998. Influence of dietary protein on urea levels in blood and milk of buffalo cows. Livest. Prod. Sci. 55:135-143. https://doi.org/10.1016/S0301-6226(98)00123-7
  9. Chilliard, Y., and A. Ferlay. 2004. Dietary lipids and forages interactions on cow and goat milk fatty acid composition and sensory properties. Reprod. Nutr. Dev. 44:467-492. https://doi.org/10.1051/rnd:2004052
  10. Chiofalo, B., L. Liotta, V. Chiofalo, and A. Zumbo. 2002. Olive cake for ewe feeding: effect on the milk acid composition. In: Proceeding of the 15th National Congress of S.I.P.A.O.C., Cagliari Italy, pp. 136-137.
  11. Chiofalo, B., L. Liotta, A. Zumbo, and V. Chiofalo. 2004. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rum. Res. 55:169-176. https://doi.org/10.1016/j.smallrumres.2003.12.011
  12. Commission Regulation (EC) No 1989/2003 of 6 November 2003 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis.
  13. Covas, M. I. 2008. Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology 16:216-221. https://doi.org/10.1007/s10787-008-8019-6
  14. EFSA. 2011. Panel on dietetic products, nutrition and allergies (NDA). Polyphenols in olive related health claims. EFSA J. 9:2033.
  15. Fenaille, F., P. Mottier, R. J. Turesky, S. Ali, and P. A. Guy. 2001. Comparison of analytical techniques to quantify malondialdehyde in milk powders. J. Chromatogr. 921:237-245. https://doi.org/10.1016/S0021-9673(01)00883-4
  16. Goering, H. K., and P. J. Van Soest. 1970. Forage fibre analysis (apparatus, reagents, procedures and some applications). ARS USDA Agriculture Hand Book $N^{\circ}$ 379, Washington, DC.
  17. Gramza-Michalowska, A., J. Korczak, and J. Regula. 2007. Use of plant extracts in summer and winter season butter oxidative stability improvement. Asia Pac. J. Clin. Nutr. 16:85-88.
  18. Hadjipanayjotou, M. 1999. Feeding ensiled crude olive cake to lactating Chios ewes, Damascus goats and Friesan cows. Livest. Prod. Sci. 59:61-66. https://doi.org/10.1016/S0301-6226(99)00005-6
  19. Havemose, M. S., M. R. Weisbjerg, W. L. P. Bredie, and J. H. Nielsen. 2004. Influence of feeding different types of roughage on the oxidative stability of milk. Int. Dairy J. 14:563-570. https://doi.org/10.1016/j.idairyj.2003.11.005
  20. INRA. 1998. Alimentation des bovines, ovins et caprins. INRA Publ., Paris, France.
  21. Lock, A., and P. C. Garnsworthy. 2003. Seasonal variation in milk conjugated linoleic acid and 9-desaturase in dairy cows. Livest. Prod. Sci. 79:47-59. https://doi.org/10.1016/S0301-6226(02)00118-5
  22. Malossini, F., M. Verna, and D. Settineri. 1983. Valore nutritivo di alimenti diversi espressi in UF tradizionali e secondo i nuovi sistemi energetici. Seminario ASPA, la stima del valore nutritivo degli alimenti, metodi classici e concezioni moderne. Roma 20-21/9/1983.
  23. Martin-Garcia, A. I., A. Moumen, P. R. Yanez-Ruiz, and E. Molina-Alcaide. 2003. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 107:61-74. https://doi.org/10.1016/S0377-8401(03)00066-X
  24. Miro-Casas, E., A. M. Farre, and M. I. Covas. 2001. Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Anal. Biochem. 294:63-72. https://doi.org/10.1006/abio.2001.5160
  25. Molina-Alcaide, E., and P. R. Yanez-Ruiz. 2008. Potential use of olive by products in ruminant feeding: A review. Anim. Feed Sci. Technol. 147:247-264. https://doi.org/10.1016/j.anifeedsci.2007.09.021
  26. Mosley, E., G. L. Powell, M. B. Riley, and T. C. Jenkins. 2002. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 43:290-296.
  27. Nefzaoui, A., and M. Vanbelle. 1986. Effects of feeding alkali-treated olive cake on intake, digestibility and rumen liquor parameters. Anim. Feed Sci. Technol. 14:139-149. https://doi.org/10.1016/0377-8401(86)90013-1
  28. Owen, R. W., W. A. Mier, and A. Giacosa. 2000. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, secoiridoids, lignans and squalene. Food Chem. Toxicol. 38:647-659. https://doi.org/10.1016/S0278-6915(00)00061-2
  29. Pazos, M., M. J. Gonzalez, J. M. Gallardo, J. L. Torres, and I. Medina. 2005. Preservation of the endogenous antioxidant system of fish muscle by grape polyphenols during forzen storage. Eur. Food Res. Technol. 220:514-519. https://doi.org/10.1007/s00217-004-1113-0
  30. Pauselli, M, M. Servili, S. Esposto, G. Gervasi, E. Mourvaki, A. Taticchi, S. Urbani, R. Selvaggini, L. Concezzi, and G. Montedoro. 2007. Effect of destoned olive cake as animal feed on ewe milk quality. Proc. Int. Conf. "New technologies for the treatment and valorization of agro by-products", ISRIM, Terni, 3-5 Oct. 2007.
  31. Pedrielli, P., and L. Skibsted. 2002. Antioxidant synergy and regeneration effect of Quercetin, (-)-Epicatechin, and (+)-Catechin on a-Tocopherol in homogeneous solutions of peroxidating methyl linoleate. J. Agric. Food Chem. 50:7138-7144. https://doi.org/10.1021/jf020437l
  32. Puppo, S., S. Bartocci, S. Terramoccia, F. Grandoni, and A. Amici. 2002. Rumen microbial counts, and in vivo digestibility in buffaloes and cattle given different diets. Anim. Sci. 72:323-329.
  33. Risvik, E., R. Popper, and R. Rogers. 1989. Expert systems and their application in sensory evaluation. Food Qual. Prefer. 1:183-184. https://doi.org/10.1016/0950-3293(89)90008-6
  34. Sadeghi, H., A. T. Yansari, and Z. Ansari-Pirsarai. 2009. Effects of different olive cake by products on dry matter intake, nutrient digestibility and performance of Zel sheep. Int. J. Agric. Biol. 11:39-43.
  35. Saija, A., D. Trombetta, A. Tomaino, R. Lo Cascio, P. Princi, N. Uccella, F. Bonina, and F. Castelli. 1998. In vitro evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int. J. Pharm. 166:123-133. https://doi.org/10.1016/S0378-5173(98)00018-0
  36. SAS (Statistical Analysis System Institute). 2001. SAS User's Guide, Statistics, SAS Institute Inc., Cary, NC.
  37. Schamberger, G. P., and T. P. Labuza. 2007. Effect of green tea flavonoids on Maillard browing in UHT milk. LWT - Food Sci. Technol. 40:1410-1417. https://doi.org/10.1016/j.lwt.2006.09.009
  38. Selner, D. R., and L. H. Schultz. 1980. Effects of feeding oleic acid or hydrogenated vegetable oils to lactating cows. J. Dairy Sci. 63:1235-1241. https://doi.org/10.3168/jds.S0022-0302(80)83074-8
  39. Servili, M., R. Selvaggini, S. Esposto, A. Taticchi, G. Montedoro, and G. Morozzi. 2004. Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 1054:113-127. https://doi.org/10.1016/j.chroma.2004.08.070
  40. Servili, M., M. Pauselli, A. Dal Bosco, C. Castellini, S. Esposto, A. Taticchi, S. Urbani, F. Mariucci, and G. Montedoro. 2007. Sanse vergini promosse a integratori mangimistici. Olivo e Olio 7-8: 42-47.
  41. Servili, M., S. Esposto, R. Fabiani, S. Urbani, A. Taticchi, F. Mariucci, R. Selvaggini, and G. Montedoro. 2009. Phenolic compounds in olive oil: antioxidant, health and sensory activities according to their chemical structure. Inflammopharmacology 17:76-84. https://doi.org/10.1007/s10787-008-8014-y
  42. Servili, M., S. Esposto, S. Urbani, A. Taticchi, and M. Petruccioli. 2011. Utilizzazione dei reflui oleari. In Oleum, Ed agricole, p. 174.
  43. Tripaldi, C., G. Palocci, M. Miarelli, M. Catta, S. Orlandini, S. Amatiste, R. Di Bernardini, and G. Catillo. 2010. Effects of mastitis on buffalo milk quality. Asian-Aust. J. Anim. Sci. 23:1319-1324. https://doi.org/10.5713/ajas.2010.90618
  44. Ulbricht, T. L. V., and D. A. T. Southgate. 1991. Coronary heart disease: seven dietary factors. The Lancet 338:985-992. https://doi.org/10.1016/0140-6736(91)91846-M
  45. Vaccarino, C., M. M. Tripodo, I. Salvo, G. Lagana, M. Verna, V. Pace, and S. Bartocci. 1987. Un nuovo processo per la valorizzazione delle sanse e delle acque di vegetazione. Nota 1, Pretrattamento delle sanse con $Na_2CO_3$. Riv. Ital. Sost. Gras. 64:535-539.
  46. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  47. Vera, R., C. Aguilar, R. Lira, P. Toro, L. Barrales, I. Pena, F. Squella, P. Perez, J. Quenaya, H. Yutronic, and I. Briones. 2009. Feeding dry olive cake modifies subcutaneous fat composition in lambs, noting cake resistance to degradation and peroxidation. Chil. J. Agric. Res. 69:548-559.
  48. Waghorn, G. C., and I. D. Shelton. 1997. Effect of condensed tannins in Lotus corniculatus on nutritive value for sheep. J. Agric. Sci. 128:365-372. https://doi.org/10.1017/S0021859697004218
  49. Wagner, J. J., K. S. Lusby, J. W. Oltjen, J. Rakestraw, R. P. Wetteman, and L. E. Walters. 1988. Carcass composition in mature Hereford cows. Estimation an effect on daily metabolizable energy requierement during winter. J. Anim. Sci. 66:603-612.
  50. Weinberg, Z. G., Y. Chen, and P. Weinberg. 2008. Ensiling olive cake without molassed for ruminant feeding. Bioresour. Technol. 99:1526-1529. https://doi.org/10.1016/j.biortech.2007.04.022
  51. Weiss, W. P., and D. J. Wyatt. 2003. Effect of dietary fat and vitamin E on $\alpha$-tocopherol in milk from dairy cows. J. Dairy Sci. 86:3582-3591. https://doi.org/10.3168/jds.S0022-0302(03)73964-2
  52. Zannoni, M., and S. Annibaldi. 1981. Standardization of the renneting ability of milk by Formagraph. Sci. Tecn. Latt.- Casearia 32:79-94.
  53. Zhu, Q. Y., Y. Huang, D. Tdang, and Z. Chen. 1999. Regeneration of a-tocopherol in human low-density lipoprotein by green tea catechin. J. Agric. Food Chem. 47:2020-2025. https://doi.org/10.1021/jf9809941

Cited by

  1. L. leaves vol.50, pp.2, 2014, https://doi.org/10.1111/ijfs.12712
  2. Supplementing diets of Awassi ewes with olive cake and tomato pomace: on-farm recovery of effects on yield, composition and fatty acid profile of the milk vol.47, pp.1, 2015, https://doi.org/10.1007/s11250-014-0699-x
  3. Evaluation of dried stoned olive pomace as supplementation for lactating Holstein cattle: effect on milk production and quality vol.55, pp.2, 2015, https://doi.org/10.1071/AN14254
  4. Performance and milk composition of dairy goats as affected by the dietary level of stoned olive cake silages vol.30, pp.3, 2016, https://doi.org/10.5713/ajas.16.0482
  5. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese vol.100, pp.11, 2017, https://doi.org/10.3168/jds.2017-12899
  6. Effect on quanti-quality milk and mozzarella cheese characteristics with further increasing the level of dried stoned olive pomace in diet for lactating buffalo vol.30, pp.11, 2017, https://doi.org/10.5713/ajas.16.0767
  7. Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5041020
  8. Lipolytic volatile compounds in dairy products derived from cows fed with dried olive pomace pp.1438-2385, 2018, https://doi.org/10.1007/s00217-018-3148-7
  9. Polar Lipids from Olives and Olive Oil: A Review on Their Identification, Significance and Potential Biotechnological Applications vol.7, pp.7, 2018, https://doi.org/10.3390/foods7070109
  10. Dietary oregano (Origanum vulgare L.) aqueous extract improves oxidative stability and consumer acceptance of meat enriched with CLA and n-3 PUFA in broilers. vol.97, pp.5, 2018, https://doi.org/10.3382/ps/pex452
  11. Extra virgin olive oil and its co-products: technologies for facing new sector challenges vol.1199, pp.None, 2013, https://doi.org/10.17660/actahortic.2018.1199.72
  12. Olive Oil Processing: Current Knowledge, Literature Gaps, and Future Perspectives vol.96, pp.5, 2013, https://doi.org/10.1002/aocs.12207
  13. Dietary Supplementation with Olive Mill Wastewater in Dairy Sheep: Evaluation of Cheese Characteristics and Presence of Bioactive Molecules vol.10, pp.11, 2013, https://doi.org/10.3390/ani10111941
  14. Milk yield of cows submitted to different levels of olive pomace in the diet vol.43, pp.None, 2013, https://doi.org/10.4025/actascianimsci.v43i1.51158
  15. Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality vol.11, pp.1, 2013, https://doi.org/10.3390/agriculture11010003
  16. Application of Olive By-Products in Livestock with Emphasis on Small Ruminants: Implications on Rumen Function, Growth Performance, Milk and Meat Quality vol.11, pp.2, 2021, https://doi.org/10.3390/ani11020531
  17. Olive pomace for the feeding of commercial poultry: effects on performance, meat and eggs quality, haematological parameters, microbiota and immunity vol.77, pp.2, 2021, https://doi.org/10.1080/00439339.2021.1894409
  18. Uso da homeopatia no gado de leite como modulador da função hepática: uma revisão vol.16, pp.1, 2021, https://doi.org/10.21615/cesmvz.16.1.2
  19. Dried Destoned Virgin Olive Pomace: A Promising New By-Product from Pomace Extraction Process vol.26, pp.14, 2013, https://doi.org/10.3390/molecules26144337
  20. Effect of Olive Cake and Cactus Cladodes Incorporation in Goat Kids’ Diet on the Rumen Microbial Community Profile and Meat Fatty Acid Composition vol.10, pp.12, 2021, https://doi.org/10.3390/biology10121237