Effects of Samchulkunbi-tang in Cultured Interstitial Cells of Cajal of Murine Small Intestine

  • Kim, Jung Nam (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Kwon, Young Kyu (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University) ;
  • Kim, Byung Joo (Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University)
  • Received : 2012.12.28
  • Accepted : 2013.02.19
  • Published : 2013.02.25

Abstract

We studied the modulation of pacemaker activities by Samchulkunbi-tang (SCKB) in cultured interstitial cells of Cajal (ICC) from murine small intestine with the whole-cell patch-clamp technique. Externally applied SCKB produced membrane depolarization in the current-clamp mode. The pretreatment with $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker potentials and suppressed the SCKB-induced action. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by SCKB. However, the application of niflumic acid (a chloride channel blocker) did not inhibit the generation of pacemaker potentials by SCKB. In addition, the membrane depolarizations were inhibited by not only GDP-${\beta}$-S, which permanently binds G-binding proteins, but also U-73122, an active phospholipase C inhibitor. These results suggest that SCKB modulates the pacemaker activities by nonselective cation channels and external $Ca^{2+}$ influx and internal $Ca^{2+}$ release via G-protein and phospholipase C-dependent mechanism. Therefore, the ICC are targets for SCKB and their interaction can affect intestinal motility.

Keywords

References

  1. Kim, S.W., Lee, T.H. Effect of Samchulkunbi-tang on the gastric secretion and intestinal transport in the rat. J Korean Oriental Medical Pathology 3: 84-90, 1988.
  2. Seo, C.S., Lee, M.Y., Kim, J.H., Lee, J.A., Shin, H.K. Simultaneous Determination of Seven Compounds by HPLC-PDA and Cytotoxicity of Samchulkunbi-tang Kor J Herbology 25(3):65-71, 2010.
  3. Szurszewsik, J.H. Electrical basis for gastrointestinal motility; in Prostaglandins and the Gastrointestinal Tract, Johnson, L. R. (ed.), p 383, Raven Press, New York, 1987.
  4. Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., Bernstein, A. W/kit gene required for intestinal pacemaker activity. Nature 373: 347-352, 1995. https://doi.org/10.1038/373347a0
  5. Langton, P., Ward, S.M., Carl, A., Nerell, M.A., Sanders, K.M. Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci USA 86: 7280-7284, 1989. https://doi.org/10.1073/pnas.86.18.7280
  6. Ordog, T., Ward, S.M., Sanders, K.M. Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol 518: 257-269, 1999. https://doi.org/10.1111/j.1469-7793.1999.0257r.x
  7. Sanders, K.M. A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111: 492-515, 1996. https://doi.org/10.1053/gast.1996.v111.pm8690216
  8. Ward, S.M., Burns, A.J., Torihashi, S., Sanders, K.M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480: 91-102, 1994. https://doi.org/10.1113/jphysiol.1994.sp020343
  9. Goto, K., Matsuoka, S., Noma, A. Two types of spontaneous depolarizations in the interstitial cells freshly prepared from the murine small intestine. J Physiol 559: 411-422, 2004. https://doi.org/10.1113/jphysiol.2004.063875
  10. Torihashi, S., Ward, S.M., Sanders, K.M. Development of c-Kit-positive cells and the onset of electrical rhythmicity in murine small intestine. Gastroenterology 112: 144-155, 1997. https://doi.org/10.1016/S0016-5085(97)70229-4
  11. Ward, S.M., Ordog, T., Koh, S.D., Baker, S.A., Jun, J.Y., Amberg, G., Monaghan, K., Sanders, K.M. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 525: 355-361, 2000. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00355.x
  12. Koh, S.D., Jun, J.Y., Kim, T.W., Sanders, K.M. A Ca($^{2+}$)-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J Physiol 540: 803-814, 2002. https://doi.org/10.1113/jphysiol.2001.014639
  13. Sanders, K.M., Koh, S.D., Ordog, T., Ward, S.M. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Neurogastroenterol. Motil 16: 100-105, 2004. https://doi.org/10.1111/j.1743-3150.2004.00483.x
  14. Kuriyama, H., Kitamura, K., Itoh, T., Inoue, R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 78: 811-920, 1998. https://doi.org/10.1152/physrev.1998.78.3.811
  15. Sanders, K.M. G protein-coupled receptors in gastrointestinal physiology. IV. Neural regulation of gastrointestinal smooth muscle. Am J Physiol 275: G1-7, 1998. https://doi.org/10.1152/ajpcell.1998.275.3.Ca1
  16. Sakamoto, T., Unno, T., Matsuyama, H., Uchiyama, M., Hattori, M., Nishimura, M., Komori, S. Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J Pharmacol Sci 100: 215-226, 2006. https://doi.org/10.1254/jphs.FP0050973
  17. Koh, S.D., Sanders, K.M., Ward, S.M. Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J Physiol 513: 203-213, 1998. https://doi.org/10.1111/j.1469-7793.1998.203by.x
  18. Thomsen, L., Robinson, T.L., Lee, J.C., Farraway, L.A., Hughes, M.J., Andrews, D.W., Huizinga, J.D. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 4: 848-851, 1998. https://doi.org/10.1038/nm0798-848
  19. Wilmsen, P.K., Spada, D.S., Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem 53: 4757-4761, 2005. https://doi.org/10.1021/jf0502000
  20. SchröSfelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., Ernst, W., Szolar, O.H. Glycyrrhizin, the main active compound in liquorice, attenuates pro-inflammatory responses by interfering with membrane-dependent receptor signalling. Biochem J 421: 473-482, 2009. https://doi.org/10.1042/BJ20082416
  21. Yeh, C.C., Kao, S.J., Lin, C.C., Wang, S.D., Liu, C.J., Kao, S.T. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci 80: 1821-1831, 2007. https://doi.org/10.1016/j.lfs.2007.01.052
  22. Yang, Y., Bian, G.X., Lu, Q.J. Neuroprotection and neumntrophism effects of liquiritin on primary cultured hippocampal cells. Zhongguo Zhongyao Zazhi 33: 931-935, 2007.
  23. Ishida, H., Takamatsu, M., Tsuji, K., Kosuge, T. Studies on active substances in herbs used for Oketsu ("stagnant blood") in Chinese medicine. VI. On the anticoagulative principle in Paeoniae Radix. Chem Pharm Bull 35: 849-852, 1987. https://doi.org/10.1248/cpb.35.849
  24. Kimura, M., Kimura, I., Nojima, H. Depolarizing neuromuscular blocking action induced by electropharmacological coupling in the combined effect of paeoniflorin and glycyrrhizin. Jpn J Pharmacol 37: 395-399, 1985. https://doi.org/10.1254/jjp.37.395
  25. Liang, J., Zhou, A., Chen, M., Xu, S. Negatively regulatory effects of paeoniflorin on immune cells. Eur J Pharmacol 183: 901-902, 1990. https://doi.org/10.1016/0014-2999(90)92731-W
  26. Hsu, F.L., Lai, C.S., Cheng, J.T. Antihyperglycemic effects of paeoniflorin and 8-debenzoyl paeoniflorin, glucosides from the root. Planta Med 63: 323-325, 1997. https://doi.org/10.1055/s-2006-957692
  27. Kim, D.H., Bae, E.A., Han, M.J. Anti-helicobacter pylori activity of the metabolites of poncirin from Poncirus trifoliata by human intestinal bacteria. Biol Pharm Bull 22: 422-424, 1999. https://doi.org/10.1248/bpb.22.422
  28. Kim, B., Han, A.R., Park, E.Y., Kim, J.Y., Cho, W., Lee, J., Seo, E.K., Lee, K.T. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-${\kappa}B$ inactivation in RAW264.7 macrophage cells. Biol Pharm Bull 30: 2345-2351, 2007. https://doi.org/10.1248/bpb.30.2345
  29. Lee, C.H., Jeong, T.S., Choi, Y.K., Hyun, B.H., Oh, G.T., Kim, E.H., Kim, J.R., Han, J.I., Bok, S.H. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 284: 681-688, 2001. https://doi.org/10.1006/bbrc.2001.5001