참고문헌
- Al-Shami A, Jhaver KG, Vogel P, et al (2010). Regulators of the proteasome pathway, Uch37 and Rpn13, play distinct roles in mouse development. PLoS One, 5, e13654. https://doi.org/10.1371/journal.pone.0013654
- Baek D, Villen J, Shin C, et al (2008). The impact of microRNAs on protein output. Nature, 455, 64-71. https://doi.org/10.1038/nature07242
- Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008). The microRNA.org resource: targets and expression. Nucleic Acids Res, 36, D149-53.
- Blom N, Gammeltoft S, Brunak S (1999). Sequence and structurebased prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 294, 1351-62. https://doi.org/10.1006/jmbi.1999.3310
- Burgie SE, Bingman CA, Soni AB, Phillips GN, Jr. (2011). Structural characterization of human Uch37. Proteins.
- Cai Y, Jin J, Yao T, et al (2007). YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol, 14, 872-4. https://doi.org/10.1038/nsmb1276
- Chen X, Lee BH, Finley D, Walters KJ (2010). Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell, 38, 404-15. https://doi.org/10.1016/j.molcel.2010.04.019
- Chen Y, Fu D, Xi J, et al (2012). Expression and Clinical Significance of UCH37 in Human Esophageal Squamous Cell Carcinoma. Dig Dis Sci, 57, 2310-7. https://doi.org/10.1007/s10620-012-2181-9
- Chen Z, Niu X, Li Z, et al (2011). Effect of ubiquitin carboxyterminal hydrolase 37 on apoptotic in A549 cells. Cell Biochem Funct, 29, 142-8. https://doi.org/10.1002/cbf.1734
- Chung CH, Baek SH (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun, 266, 633-40. https://doi.org/10.1006/bbrc.1999.1880
- Cutts AJ, Soond SM, Powell S, Chantry A (2011). Early phase TGFbeta receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. Int J Biochem Cell Biol, 43, 604-12. https://doi.org/10.1016/j.biocel.2010.12.018
- D'Arcy P, Brnjic S, Olofsson MH, et al (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med, 17, 1636-40. https://doi.org/10.1038/nm.2536
- Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994). A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem, 269, 7059-61.
- Fang Y, Fu D, Shen XZ (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta, 1806, 1-6.
- Fang Y, Fu D, Tang W, et al (2013). Ubiquitin C-terminal Hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochim Biophys Acta, 1833, 559-72. https://doi.org/10.1016/j.bbamcr.2012.11.020
- Fang Y, Mu J, Ma Y, et al (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Mol Cell Biochem, 359, 59-66. https://doi.org/10.1007/s11010-011-0999-7
- Friedman RC, Farh KK, Burge CB, Bartel DP (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 19, 92-105.
- Glickman MH, Ciechanover A (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428.
- Goldberg AL (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426, 895-9. https://doi.org/10.1038/nature02263
- Guterman A, Glickman MH (2004). Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci, 5, 201-11. https://doi.org/10.2174/1389203043379756
- Hamazaki J, Iemura S, Natsume T, et al (2006). A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J, 25, 4524-36. https://doi.org/10.1038/sj.emboj.7601338
- Hanna J, Hathaway NA, Tone Y, et al (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell, 127, 99-111. https://doi.org/10.1016/j.cell.2006.07.038
- Hershko A and Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67, 425-79. https://doi.org/10.1146/annurev.biochem.67.1.425
- Hirohashi Y, Wang Q, Liu Q, et al (2006). p78/MCRS1 forms a complex with centrosomal protein Nde1 and is essential for cell viability. Oncogene, 25, 4937-46. https://doi.org/10.1038/sj.onc.1209500
- Holzl H, Kapelari B, Kellermann J, et al (2000). The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol, 150, 119-30. https://doi.org/10.1083/jcb.150.1.119
- Husnjak K, Elsasser S, Zhang N, et al (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453, 481-8. https://doi.org/10.1038/nature06926
- Jacobson AD, Zhang NY, Xu P, et al (2009). The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem, 284, 35485-94. https://doi.org/10.1074/jbc.M109.052928
- Kapuria V, Peterson LF, Fang D, et al (2010). Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res, 70, 9265-76. https://doi.org/10.1158/0008-5472.CAN-10-1530
- Koulich E, Li X, DeMartino GN (2008). Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell, 19, 1072-82.
- Lam YA, DeMartino GN, Pickart CM, Cohen RE (1997a). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J Biol Chem, 272, 28438-46. https://doi.org/10.1074/jbc.272.45.28438
- Lam YA, Xu W, DeMartino GN, Cohen RE (1997b). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385, 737-40. https://doi.org/10.1038/385737a0
- Larkin MA, Blackshields G, Brown NP, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-8. https://doi.org/10.1093/bioinformatics/btm404
- Lee BH, Lee MJ, Park S, et al (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467, 179-84. https://doi.org/10.1038/nature09299
- Lee MJ, Lee BH, Hanna J, King RW, Finley D (2011). Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics, 10, R110003871 https://doi.org/10.1074/mcp.R110.003871
- Li T, Duan W, Yang H, et al (2001). Identification of two proteins, S14 and UIP1, that interact with UCH37. FEBS Lett, 488, 201-5. https://doi.org/10.1016/S0014-5793(00)02436-4
- Liu CH, Goldberg AL, Qiu XB (2007). New insights into the role of the ubiquitin-proteasome pathway in the regulation of apoptosis. Chang Gung Med J, 30, 469-79.
- Mazumdar T, Gorgun FM, Sha Y, et al (2010). Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci U S A, 107, 13854-9. https://doi.org/10.1073/pnas.0913495107
- Nishio K, Kim SW, Kawai K, et al (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun, 390, 855-60. https://doi.org/10.1016/j.bbrc.2009.10.062
- Peth A, Besche HC, Goldberg AL (2009). Ubiquitinated proteins activate the proteasome by binding to Usp14/Ubp6, which causes 20S gate opening. Mol Cell, 36, 794-804. https://doi.org/10.1016/j.molcel.2009.11.015
- Peth A, Kukushkin N, Bosse M, Goldberg AL (2013). Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37. J Biol Chem, 288, 7781-90. https://doi.org/10.1074/jbc.M112.441907
- Pickart CM (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70, 503-33. https://doi.org/10.1146/annurev.biochem.70.1.503
- Qiu XB, Ouyang SY, Li CJ, et al (2006). hRpn13/ADRM1/ GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J, 25, 5742-53. https://doi.org/10.1038/sj.emboj.7601450
- Reese MG (2001). Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem, 26, 51-6. https://doi.org/10.1016/S0097-8485(01)00099-7
- Rolen U, Kobzeva V, Gasparjan N, et al (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol Carcinog, 45, 260-9. https://doi.org/10.1002/mc.20177
- Saeki Y, Tanaka K (2008). Cell biology: two hands for degradation. Nature, 453, 460-1. https://doi.org/10.1038/453460a
- Schreiner P, Chen X, Husnjak K, et al (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453, 548-52. https://doi.org/10.1038/nature06924
- Stone M, Hartmann-Petersen R, Seeger M, et al (2004). Uch2/ Uch37 is the major deubiquitinating enzyme associated with the 26S proteasome in fission yeast. J Mol Biol, 344, 697-706. https://doi.org/10.1016/j.jmb.2004.09.057
- Sulewska A, Niklinska W, Kozlowski M, et al (2007). DNA methylation in states of cell physiology and pathology. Folia Histochem Cytobiol, 45, 149-58.
- The PyMOL Molecular Graphics System: [http://www.pymol.org/citing], Version 1.3, http://www.pymol.org/export.
- Verma R, Aravind L, Oania R, et al (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 298, 611-5. https://doi.org/10.1126/science.1075898
- Wang X (2008). miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA, 14, 1012-7. https://doi.org/10.1261/rna.965408
- Wang X, El Naqa IM (2008). Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics, 24, 325-32. https://doi.org/10.1093/bioinformatics/btm595
- Wicks SJ, Grocott T, Haros K, et al (2006). Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway. Biochem Soc Trans, 34, 761-3. https://doi.org/10.1042/BST0340761
- Wicks SJ, Haros K, Maillard M, et al (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGFbeta signalling. Oncogene, 24, 8080-4. https://doi.org/10.1038/sj.onc.1208944
- Wilkinson KD (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J, 11, 1245-56.
- Wilkinson KD (2002). Cell biology: unchaining the condemned. Nature, 419, 351-3. https://doi.org/10.1038/419351a
- Wong YH, Lee TY, Liang HK, et al (2007). KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Res, 35, W588-94. https://doi.org/10.1093/nar/gkm322
- Yao T, Cohen RE (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419, 403-7. https://doi.org/10.1038/nature01071
- Yao T, Song L, Jin J, et al (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell, 31, 909-17. https://doi.org/10.1016/j.molcel.2008.08.027
- Yao T, Song L, Xu W, et al (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol, 8, 994-1002. https://doi.org/10.1038/ncb1460
- Zediak VP, Berger SL (2008). Hit and run: transient deubiquitylase activity in a chromatin-remodeling complex. Mol Cell, 31, 773-4. https://doi.org/10.1016/j.molcel.2008.09.005
- Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY (2011). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J, 441, 143-9.
피인용 문헌
- High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2446-3
- Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications pp.1573-7233, 2017, https://doi.org/10.1007/s10555-017-9702-0
- The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened pp.1759-4685, 2017, https://doi.org/10.1093/jmcb/mjx036
- Computational and biochemical studies of isothiocyanates as inhibitors of proteasomal cysteine deubiquitinases in human cancer cells vol.119, pp.11, 2018, https://doi.org/10.1002/jcb.27157
- Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition vol.10, pp.17, 2018, https://doi.org/10.4155/fmc-2018-0091