DOI QR코드

DOI QR Code

Contact resistance in graphene channel transistors

  • Song, Seung Min (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Byung Jin (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2013.05.24
  • 심사 : 2013.06.30
  • 발행 : 2013.07.31

초록

The performance of graphene-based electronic devices is critically affected by the quality of the graphene-metal contact. The understanding of graphene-metal is therefore critical for the successful development of graphene-based electronic devices, especially field-effect-transistors. Here, we provide a review of the peculiar properties of graphene-metal contacts, including work function pinning, the charge transport mechanism, the impact of the process on the contract resistance, and other factors.

키워드

참고문헌

  1. Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field-effect device. IEEE Electron Device Lett, 28, 282 (2007). http://dx.doi.org/10.1109/Led.2007.891668.
  2. Meric I, Baklitskaya N, Kim P, Shepard KL. RF performance of top-gated, zero-bandgap graphene field-effect transistors. IEEE International Electron Devices Meeting, San Francisco, CA, 1 (2008). http://dx.doi.org/10.1109/IEDM.2008.4796738.
  3. Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P. Operation of graphene transistors at gigahertz frequencies. Nano Lett, 9, 422 (2009). http://dx.doi.org/10.1021/Nl803316h.
  4. Lin YM, Jenkins K, Farmer D, Valdes-Garcia A, Avouris P, Sung CY, Chiu HY, Ek B. Development of graphene FETs for high frequency electronics. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424378.
  5. Farmer DB, Chiu HY, Lin YM, Jenkins KA, Xia FN, Avouris P. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett, 9, 4474 (2009). http://dx.doi.org/10.1021/Nl902788u.
  6. Dimitrakopoulos C, Lin YM, Grill A, Farmer DB, Freitag M, Sun YN, Han SJ, Chen ZH, Jenkins KA, Zhu Y, Liu ZH, McArdle TJ, Ott JA, Wisnieff R, Avouris P. Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high frequency transistors. J Vac Sci Technol, B, 28, 985 (2010). http://dx.doi.org/10.1116/1.3480961.
  7. Lin YM, Chiu HY, Jenkins KA, Farmer DB, Avouris P, Valdes-Garcia A. Dual-gate graphene FETs with f(T) of 50 GHz. IEEE Electron Device Lett, 31, 68 (2010). http://dx.doi.org/10.1109/led.2009.2034876.
  8. Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. 100-GHz transistors from wafer-scale epitaxial graphene. Science, 327, 662 (2010). http://dx.doi.org/10.1126/science.1184289.
  9. Pince E, Kocabas C. Investigation of high frequency performance limit of graphene field effect transistors. Appl Phys Lett, 97, 173106 (2010). http://dx.doi.org/10.1063/1.3506506.
  10. Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X. High-speed graphene transistors with a selfaligned nanowire gate. Nature, 467, 305 (2010). http://dx.doi.org/10.1038/nature09405.
  11. Chauhan J, Guo J. Assessment of high-frequency performance limits of graphene field-effect transistors. Nano Res, 4, 571 (2011). http://dx.doi.org/10.1007/s12274-011-0113-1.
  12. Das S, Appenzeller J. An all-graphene radio frequency low noise amplifier. IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, 1 (2011). http://dx.doi.org/10.1109/RFIC.2011.5940628.
  13. Koswatta SO, Valdes-Garcia A, Steiner MB, Lin YM, Avouris P. Ultimate RF potential of carbon electronics. IEEE Trans Microwave Theory Tech, 59, 2739 (2011). http://dx.doi.org/10.1109/tmtt.2011.2150241.
  14. Moon JS, Curtis D, Zehnder D, Kim S, Gaskill DK, Jernigan GG, Myers-Ward RL, Eddy CR, Campbell PM, Lee KM, Asbeck P. Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett, 32, 270 (2011). http://dx.doi.org/10.1109/led.2010.2100074.
  15. Wu Y, Lin Y, Bol AA, Jenkins KA, Xia F, Farmer DB, Zhu Y, Avouris P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74 (2011). http://dx.doi.org/10.1038/nature09979.
  16. Badmaev A, Che YC, Li Z, Wang C, Zhou CW. Self-aligned fabrication of graphene RF transistors with T-shaped gate. ACS Nano, 6, 3371 (2012). http://dx.doi.org/10.1021/Nn300393c.
  17. Cheng R, Bai JW, Liao L, Zhou HL, Chen Y, Liu LX, Lin YC, Jiang S, Huang Y, Duan XF. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc Natl Acad Sci U S A, 109, 11588 (2012). http://dx.doi.org/10.1073/pnas.1205696109.
  18. Wu YQ, Jenkins KA, Valdes-Garcia A, Farmer DB, Zhu Y, Bol AA, Dimitrakopoulos C, Zhu WJ, Xia FN, Avouris P, Lin YM. State-of-the-art graphene high-frequency electronics. Nano Lett, 12, 3062 (2012). http://dx.doi.org/10.1021/Nl300904k.
  19. Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl Phys Lett, 94, 062107 (2009). http://dx.doi.org/10.1063/1.3077021.
  20. Shin WC, Kim TY, Sul O, Choa BJ. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly (4-vinylphenol) layer for enhanced device performance and reliability. Appl Phys Lett, 101, 033507 (2012). http://dx.doi.org/10.1063/1.4737645.
  21. Xia F, Perebeinos V, Lin Y, Wu Y, Avouris P. The origins and limits of metal-graphene junction resistance. Nat Nanotechnol, 6, 179 (2011). http://dx.doi.org/10.1038/nnano.2011.6.
  22. Moon JS, Antcliffe M, Seo HC, Curtis D, Lin S, Schmitz A, Milosavljevic I, Kiselev AA, Ross RS, Gaskill DK, Campbell PM, Fitch RC, Lee KM, Asbeck P. Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl Phys Lett, 100, 203512 (2012). http://dx.doi.org/10.1063/1.4719579.
  23. Farmer DB, Lin YM, Avouris P. Graphene field-effect transistors with self-aligned gates. Appl Phys Lett, 97, 013103 (2010). http://dx.doi.org/10.1063/1.3459972.
  24. Liu Z, Bol AA, Haensch W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett, 11, 523 (2010). http://dx.doi.org/10.1021/nl1033842.
  25. Nagashio K, Nishimura T, Kita K, Toriumi A. Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. IEEE International Electron Devices Meeting, Baltimore, MD, 1 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424297.
  26. Blake P, Yang R, Morozov S, Schedin F, Ponomarenko L, Zhukov A, Nair R, Grigorieva I, Novoselov K, Geim A. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun, 149, 1068 (2009). http://dx.doi.org/10.1016/j.ssc.2009.02.039.
  27. Murali R, Yang Y, Brenner K, Beck T, Meindl JD. Breakdown current density of graphene nanoribbons. Appl Phys Lett, 94, 243114 (2009). http://dx.doi.org/10.1063/1.3147183.
  28. Xia F, Farmer DB, Lin Y, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett, 10, 715 (2010). http://dx.doi.org/10.1021/nl9039636.
  29. Russo S, Craciun M, Yamamoto M, Morpurgo A, Tarucha S. Contact resistance in graphene-based devices. Physica E, 42, 677 (2010). http://dx.doi.org/10.1016/j.physe.2009.11.080.
  30. Venugopal A, Colombo L, Vogel E. Contact resistance in few and multilayer graphene devices. Appl Phys Lett, 96, 013512 (2010). http://dx.doi.org/10.1063/1.3290248.
  31. Nagashio K, Nishimura T, Kita K, Toriumi A. Contact resistivity and current flow path at metal/graphene contact. Appl Phys Lett, 97, 143514 (2010). http://dx.doi.org/10.1063/1.3491804.
  32. Schwierz F. Graphene transistors. Nat Nanotechnol, 5, 487 (2010). http://dx.doi.org/10.1038/nnano.2010.89.
  33. Leonard F, Talin AA. Electrical contacts to one-and two-dimensional nanomaterials. Nat Nanotechnol, 6, 773 (2011). http://dx.doi.org/10.1038/nnano.2011.196.
  34. Giovannetti G, Khomyakov P, Brocks G, Karpan V, Van den Brink J, Kelly P. Doping graphene with metal contacts. Phys Rev Lett, 101, 26803 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.026803.
  35. Khomyakov P, Starikov A, Brocks G, Kelly P. Nonlinear screening of charges induced in graphene by metal contacts. Phys Rev B, 82, 115437 (2010). http://dx.doi.org/10.1103/PhysRevB.82.115437.
  36. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P. Tuning the graphene work function by electric field effect. Nano Lett, 9, 3430 (2009). http://dx.doi.org/10.1021/nl901572a.
  37. Yan L, Punckt C, Aksay IA, Mertin W, Bacher G. Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy. Nano Lett, 11, 3543 (2011). http://dx.doi.org/10.1021/nl201070c.
  38. Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K. Contact and edge effects in graphene devices. Nat Nanotechnol, 3, 486 (2008). http://dx.doi.org/10.1038/nnano.2008.172.
  39. Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y, Tsang J, Perebeinos V, Avouris P. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett, 9, 1039 (2009). http://dx.doi.org/10.1021/nl8033812.
  40. Mueller T, Xia F, Freitag M, Tsang J, Avouris P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys Rev B, 79, 245430 (2009). http://dx.doi.org/10.1103/PhysRevB.79.245430.
  41. Knoch J, Chen Z, Appenzeller J. Properties of metal-graphene contacts. IEEE Trans Nanotechnol, 11, 513 (2011). http://dx.doi.org/10.1109/TNANO.2011.2178611.
  42. Low T, Hong S, Appenzeller J, Datta S, Lundstrom MS. Conductance asymmetry of graphene pn junction. IEEE Trans Electron Devices, 56, 1292 (2009). http://dx.doi.org/10.1109/TED.2009.2017646.
  43. Nagashio K, Toriumi A. Density-of-states limited contact resistance in graphene field-effect transistors. Jpn J Appl Phys, 50, 070108 (2011). http://dx.doi.org/10.1143/jjap.50.070108.
  44. Nouchi R, Tanigaki K. Charge-density depinning at metal contacts of graphene field-effect transistors. Appl Phys Lett, 96, 253503 (2010). http://dx.doi.org/10.1063/1.3456383.
  45. Huard B, Stander N, Sulpizio J, Goldhaber-Gordon D. Evidence of the role of contacts on the observed electron-hole asymmetry in graphene. Phys Rev B, 78, 121402 (2008). http://dx.doi.org/10.1103/PhysRevB.78.121402.
  46. Chen Z, Appenzeller J. Gate modulation of graphene contacts-on the scaling of graphene FETs. Symposium on VLSI Technology, Honolulu, HI, 128 (2009).
  47. Song SM, Park JK, Sul OJ, Cho BJ. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett, 12, 3887 (2012). http://dx.doi.org/10.1021/nl300266p.
  48. Wang QJ, Che JG. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys Rev Lett, 103, 66802 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.066802.
  49. Ran Q, Gao M, Guan X, Wang Y, Yu Z. First-principles investigation on bonding formation and electronic structure of metal-graphene contacts. Appl Phys Lett, 94, 103511 (2009). http://dx.doi.org/10.1063/1.3095438.
  50. Berdebes D, Low T, Sui Y, Appenzeller J, Lundstrom MS. Substrate gating of contact resistance in graphene transistors. IEEE Trans Electron Devices, 58, 3925 (2011). http://dx.doi.org/10.1109/TED.2011.2163800.
  51. Farmer DB, Golizadeh-Mojarad R, Perebeinos V, Lin YM, Tulevski GS, Tsang JC, Avouris P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 9, 388 (2008). http://dx.doi.org/10.1021/nl803214a.
  52. Grosse KL, Bae MH, Lian F, Pop E, King WP. Nanoscale Joule heating, Peltier cooling and current crowding at graphenemetal contacts. Nat Nanotechnol, 6, 287 (2011). http://dx.doi.org/10.1038/nnano.2011.39.
  53. Xu HT, Wang S, Zhang ZY, Wang ZX, Xu HL, Peng LM. Contact length scaling in graphene field-effect transistors. Appl Phys Lett, 100, 103501 (2012). http://dx.doi.org/10.1063/1.3691629.
  54. Murrmann H, Widmann D. Current crowding on metal contacts to planar devices. IEEE Trans Electron Devices, 16, 1022 (1969). http://dx.doi.org/10.1109/T-ED.1969.16904.
  55. Cheianov VV, Fal'ko VI. Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys Rev B, 74, 041403 (2006). http://dx.doi.org/10.1103/Physrevb.74.041403.
  56. Katsnelson MI, Novoselov KS, Geim AK. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2, 620 (2006). http://dx.doi.org/10.1038/Nphys384.
  57. Matsuda Y, Deng WQ, Goddard WA. Contact resistance for "end-contacted" metal- graphene and metal- nanotube interfaces from quantum mechanics. J Phys Chem C, 114, 17845 (2010). http://dx.doi.org/10.1021/jp806437y.
  58. Song SM, Cho BJ. Investigation of interaction between graphene and dielectrics. Nanotechnology, 21, 335706 (2010). http://dx.doi.org/10.1088/0957-4484/21/33/335706.
  59. Oh JG, Shin YS, Shin WC, Sul OJ, Cho BJ. Dirac voltage tunability by $Hf_1-_xLa_xO$ gate dielectric composition modulation for graphene field effect devices. Appl Phys Lett, 99, 193503 (2011). http://dx.doi.org/10.1063/1.3659691.
  60. Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J, Von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys, 4, 144 (2007). http://dx.doi.org/10.1038/nphys781.
  61. Zhang Y, Brar VW, Girit C, Zettl A, Crommie MF. Origin of spatial charge inhomogeneity in graphene. Nat Phys, 5, 722 (2009). http://dx.doi.org/10.1038/nphys1365.
  62. Liu H, Liu Y, Zhu D. Chemical doping of graphene. J Mater Chem, 21, 3335 (2011). http://dx.doi.org/10.1039/C0JM02922J.
  63. Levesque PL, Sabri SS, Aguirre CM, Guillemette J, Siaj M, Desjardins P, Szkopek T, Martel R. Probing charge transfer at surfaces using graphene transistors. Nano Lett, 11, 132 (2010). http://dx.doi.org/10.1021/nl103015w.
  64. Casiraghi C, Pisana S, Novoselov K, Geim A, Ferrari A. Raman fingerprint of charged impurities in graphene. Appl Phys Lett, 91, 233108 (2007). http://dx.doi.org/10.1063/1.2818692.
  65. Berciaud S, Ryu S, Brus LE, Heinz TF. Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Lett, 9, 346 (2008). http://dx.doi.org/10.1021/nl8031444.
  66. Lafkioti M, Krauss B, Lohmann T, Zschieschang U, Klauk H, Klitzing K, Smet JH. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett, 10, 1149 (2010). http://dx.doi.org/10.1021/nl903162a.
  67. Pirkle A, Chan J, Venugopal A, Hinojos D, Magnuson C, Mc-Donnell S, Colombo L, Vogel E, Ruoff R, Wallace R. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to $SiO_2$. Appl Phys Lett, 99, 122108 (2011). http://dx.doi.org/10.1063/1.3643444.
  68. Lin YC, Lu CC, Yeh CH, Jin C, Suenaga K, Chiu PW. Graphene annealing: how clean can it be? Nano Lett, 12, 414 (2011). http://dx.doi.org/10.1021/nl203733r.
  69. Cheng Z, Zhou Q, Wang C, Li Q, Wang C, Fang Y. Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett, 11, 767 (2011). http://dx.doi.org/10.1021/nl103977d.
  70. Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J. Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol, 5, 722 (2010). http://dx.doi.org/10.1038/nnano.2010.172.
  71. Xue J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat Mater, 10, 282 (2011). http://dx.doi.org/10.1038/nmat2968.
  72. Decker R, Wang Y, Brar VW, Regan W, Tsai H-Z, Wu Q, Gannett W, Zettl A, Crommie MF. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett, 11, 2291 (2011). http://dx.doi.org/10.1021/nl2005115.
  73. Kim K, Choi JY, Kim T, Cho SH, Chung HJ. A role for graphene in silicon-based semiconductor devices. Nature, 479, 338 (2011). http://dx.doi.org/10.1038/nature10680.
  74. Robinson JA, LaBella M, Zhu M, Hollander M, Kasarda R, Hughes Z, Trumbull K, Cavalero R, Snyder D. Contacting graphene. Appl Phys Lett, 98, 053103 (2011). http://dx.doi.org/10.1063/1.3549183.
  75. Choi MS, Lee SH, Yoo WJ. Plasma treatments to improve metal contacts in graphene field effect transistor. J Appl Phys, 110, 073305 (2011). http://dx.doi.org/10.1063/1.3646506.
  76. Liu W, Li M, Xu S, Zhang Q, Zhu Y, Pey K, Hu H, Shen Z, Zou X, Wang J. Understanding the contact characteristics in single or multi-layer graphene devices: the impact of defects (carbon vacancies) and the asymmetric transportation behavior. IEEE International Electron Devices Meeting, San Francisco, CA, 23.3.1 (2010). http://dx.doi.org/10.1109/IEDM.2010.5703420.
  77. Matsubara K, Sugihara K, Tsuzuku T. Electrical-resistance in the C-direction of graphite. Phys Rev B, 41, 969 (1990). http://dx.doi.org/10.1103/PhysRevB.41.969.
  78. Khatami Y, Li H, Xu C, Banerjee K. Metal-to-multilayer-graphene contact-Part I: Contact resistance modeling. IEEE Trans Electron Devices, 59, 2444 (2012). http://dx.doi.org/10.1109/TED.2012.2205256.
  79. Franklin AD, Han SJ, Bol AA, Perebeinos V. Double Contacts for Improved Performance of Graphene Transistors. IEEE Electron Device Lett, 33, 17 (2012). http://dx.doi.org/10.1109/Led.2011.2173154.
  80. Smith JT, Franklin AD, Farmer DB, Dimitrakopoulos CD. Reducing contact resistance in graphene devices through contact area patterning. ACS Nano, 7, 3661 (2013). http://dx.doi.org/10.1021/nn400671z.

피인용 문헌

  1. Josephson-Like Behaviour of the Current–Voltage Characteristics of Multi-graphene Flakes Embedded in Polystyrene vol.185, pp.5-6, 2016, https://doi.org/10.1007/s10909-015-1459-7
  2. Field Effect Transistors vol.26, pp.29, 2016, https://doi.org/10.1002/adfm.201600771
  3. Current crowding mediated large contact noise in graphene field-effect transistors vol.7, pp.2041-1723, 2016, https://doi.org/10.1038/ncomms13703
  4. Graphene Optical Switch Based on Charge Transfer Plasmons vol.11, pp.11, 2017, https://doi.org/10.1002/pssr.201700285
  5. interaction vol.109, pp.3, 2016, https://doi.org/10.1063/1.4959560
  6. Graphene devices with bottom-up contacts by area-selective atomic layer deposition vol.4, pp.2, 2017, https://doi.org/10.1088/2053-1583/aa636a
  7. Atomistic Insight into the Formation of Metal-Graphene One-Dimensional Contacts vol.10, pp.2, 2018, https://doi.org/10.1103/PhysRevApplied.10.024016
  8. Pt-Graphene Contacts Fabricated by Plasma Functionalization and Atomic Layer Deposition vol.5, pp.13, 2018, https://doi.org/10.1002/admi.201800268