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  Drug abuse has become a major social problem of the modern world and majority of these abusive 
drugs or their metabolites are excreted through the kidneys and, thus, the renal complications of these 
drugs are very common. Morphine, heroin, cocaine, nicotine and alcohol are the most commonly abused 
drugs, and their use is associated with various types of renal toxicity. The renal complications include 
a wide range of glomerular, interstitial and vascular diseases leading to acute or chronic renal failure. 
The present review discusses the renal toxicity profile and possible mechanisms of commonly abused 
drugs including morphine, heroin, cocaine, nicotine, caffeine and alcohol. 
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INTRODUCTION

  Drugs are the natural or synthetic substances that are 
used for medical purposes however, the repeated use of 
some of these leads to transient or chronic dependency [1]. 
Although human being has been using drugs for entertain-
ment purposes since long time, yet the number of drugs 
dependents has increased over the last few years [2]. Drug 
abuse has become a major social problem of the modern 
world as it is very common and involves lifetime exposure 
of about 46% of the general population. In India, the 
National Household survey of Drug Use documented the 
nationwide prevalence of drug abuse and found that alcohol 
(21.4%) is the primary drug of abuse followed by opioids 
(0.7%). The prevalence of tobacco use is high at 55.8% in 
males between 41∼50 years of age. Cocaine abuse is epi-
demic in the United States with a total of 34.3 million 
Americans (14.6% of surveyed population) have used co-
caine at some time. The majority of these substances or 
their metabolites are excreted through the kidneys and re-
nal complications of drug abuse are very common. It in-
cludes a wide range of glomerular, interstitial and vascular 
diseases. The damage may be acute and reversible, or 
chronic and can leads to end stage renal failure. The in-
volvement of the kidney due to drug abuse is either attrib-
uted to their elimination through the kidney, or a direct 
nephrotoxic effect [3]. 
  Both endogenous and exogenous opioids have a strong in-

fluence on the renal functions. Endogenous opioids are 
known to play a pivotal role in controlling kidney function 
in normal and pathological states [4]. The endogenous 
opioid peptides are referred to as ‘endorphins’ and these 
bind to mu, delta and kappa receptors localized on the dif-
ferent parts of the kidney [5,6]. Kappa opioid receptors are 
mostly localized in the renal cortex [7]. Mu and kappa re-
ceptors are present on the mesangial cells of the kidney, 
while delta receptors are barely detectable in mesangial 
cells [6]. There is considerable variation regarding the pres-
ence and localization of these opioid receptors depending 
on the type of species. Mu and kappa opioid receptors are 
absent in guinea pig kidney, however, delta opioid receptors 
are identified in guinea pig kidney mainly in the region 
of corticomedullary junction, collecting ducts, renal tubule 
or vascular tissue [8]. Opioids produce physiological chan-
ges in kidney [6,9], and endorphins along with other opioid 
peptides participate in the development of uremic syn-
drome [10]. Opioids have been shown to enhance the renal 
interstitial scarring in HIV-associated nephropathy [11]. 
Studies have also suggested that chronic administration of 
clinically relevant doses of opioids causes structural abnor-
malities and renal dysfunction in a murine model of cancer 
[12]. Exogenous opioids like morphine and heroin produce 
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renal injuries. Morphine addiction can cause progressive 
chronic renal failure [13] and tubular epithelial cell degen-
eration [14]. Overdose of morphine increases the oxidative 
stress in the renal epithelial which leads to renal injury 
[15]. Heroin abuse is also responsible for the several renal 
complications [16]. Cocaine abuse may cause interstitial fib-
rosis [17], renal atherogenesis [18], glomerulosclerosis [19], 
renal infarction, electrolyte imbalance, acute renal failure 
and urinary tract infections (UTI’s). The pathological role 
of smoking in the development of kidney injury has been 
recognized [20]. Chronic exposure to nicotine increases the 
severity of acute renal ischemia-reperfusion injury [21], 
which may be due to an increased oxidative stress in renal 
cells [22] or due to involvement of angiotensin II type 1b 
receptor (AT1b) found on kidneys [23]. Caffeine admin-
istration is associated with the rhabdomyolysis which leads 
to abnormality in kidney functions [24]. Both acute and 
chronic alcohol consumption can compromise the kidney 
function [25] and its consumption has been shown to reduce 
renal function [26]. Alcohol consumption is a probable risk 
factor for end stage renal disease (ESRD) [27]. In this re-
view renal toxicities of commonly abused substances like 
opioids, cocaine, tobacco (nicotine), caffeine, and alcohol 
along with the possible mechanisms are discussed. 

ENDOGENOUS OPIOIDS AND RENAL 
TOXICITY

Cholestasis-induced nephrotoxicity

  Cholestatic liver disease is associated with major compli-
cations such as pulmonary and cardiovascular dysfunction, 
sepsis, pruritis and renal failure [28,29]. Renal failure is 
one of the most frequent complications of obstructive jaun-
dice and renal failure is observed in 4∼18% of the patients 
[30]. The kidney undergoes non-specific changes and tubu-
lar necrosis in cholestasis, however, its exact mechanism 
is still unknown. There have been number of studies show-
ing an increased opioidergic neuromodulation, increased to-
tal plasma opioid activity (upto 3 times), and elevated plas-
ma enkephalin concentrations (upto 17 times) in cholestasis 
[31-33]. The studies have shown an important role of endog-
enous opioids, particularly methionine enkephalin, in sev-
eral deleterious consequences of cholestasis including renal 
failure [34-37]. Recently, Deroee and co-workers described 
the critical role of endogenous opioids in an experimental 
model of cholestasis (bile duct ligation)-induced renal fail-
ure in rats. Naltrexone treatment was shown to sig-
nificantly reverse bile duct ligation-induced increased bio-
chemical parameters of liver injury (alanine amino-
transferase and aspartate transaminase) and renal injury 
(N-acetyl-β-D-glucosaminidase activity) along with pre-
vention of structural alterations in renal tubules [38].
  The exact mechanisms for cholestasis-induced opioid 
overproduction and thereafter, renal failure is still un-
known. Increased levels of opioids may produce detrimental 
effects by various mechanisms including oxidative stress, 
nitric oxide (NO) overproduction, apoptosis and vascular 
endothelial dysfunction [29,31]. In the liver, opioid receptor 
agonists have been shown to stimulate the production of 
superoxide anions in macrophages and neutrophils [39,40] 
and oxidative stress is very well documented to induce re-
nal failure [39,41,42]. Free oxygen radicals cause lipid per-
oxidation in renal arterial endothelium, mesangial and re-

nal tubular cells and cause renal failure [43]. The opioid 
receptor agonists are also shown to induce apoptosis in dif-
ferent tissues by enhancing the expression of pro-apoptotic 
FasL, Fas, and Bad proteins, and reducing the expression 
of anti-apoptotic Bcl-2 oncoprotein [44-46].

EXOGENOUS OPIOIDS AND RENAL 
TOXICITY

  Various studies have shown that administration of exoge-
nous opioids also cause kidney diseases. The exogenous 
opioids that may produce kidney diseases are described:

Morphine

  Clinical studies suggest that morphine addicts are at in-
creased risk for progressive chronic renal failure [13,47,48]. 
Intravenous opiate addiction has also been considered a 
risk factor for the development of human immunodeficiency 
(HIV)-associated nephropathy [49,50]. Morphine is metabo-
lized in the liver to morphine-3-glucuronide (55%), mor-
phine-6-glucuronide (10%), and normorphine (4%), all of 
which are excreted through urine. However in renal failure, 
morphine and its metabolites accumulate in the plasma, 
serum, brain, cerebrospinal fluid and cause myoclonic 
spasm and respiratory depression [51,52]. The overdose of 
morphine (more than 0.1 gm, urine concentration 6384 
ng/ml) produces rhabdomyolysis which in turn causes acute 
renal failure. In these patients, laboratory examination has 
revealed an elevated creatine kinase activity, increased 
urine myoglobin concentration and raised plasma crea-
tinine signifying the development of acute muscle damage 
and renal failure [53]. Morphine administration is asso-
ciated with reversible hydronephrosis and renal impair-
ment in premature infants [54]. Within 24 h of morphine 
administration, infants have been shown to develop oliguria 
with very high level of the serum creatinine. The cessation 
of morphine results in rapid and complete resolution of the 
hydronephrosis and normalization of elevated creatinine 
[55]. Weber and his co-workers examined the effect of exog-
enous opioid treatment (chronic morphine) and reported an 
increase in kidney weight and glomerular volume in 
C57/BL6 WT mice. 
  Sumathi and Devaraj demonstrated that chronic admin-
istration of morphine causes an increased levels of urea, 
uric acid and creatinine in the serum and the increased 
levels of these end products of nitrogen metabolism might 
be due to the damage caused by long-term effect of mor-
phine in the kidney. Morphine was shown to produce tubu-
lar epithelial cell degeneration with cellular casts within 
the lumen of the tubules in the kidney [14]. Morphine stim-
ulates the production of superoxide by macrophages and 
mesangial cells [56,57]. Morphine inhibits the glutathione 
reductase which leads to increased oxidative stress in cells 
and renal injury [15]. Morphine is documented to enhance 
the proliferation of mesangial cells which is a precursor of 
glomerulosclerosis [58]. Morphine has a bimodal effect on 
glomerular epithelial cells (GEC). At lower concentrations, 
morphine promotes GEC growth, whereas at higher concen-
trations, morphine triggers apoptosis of these epithelial 
cells. Further, morphine also exerts a bimodal effect on 
heme oxygenase activity in GEC (stimulatory at lower and 
suppressive at higher concentrations) [59]. The chronic use 
of morphine leads to structural kidney abnormalities along 
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with upregulation of NOS, COX-2 and HO-1 in a murine 
model of cancer [12]. 
  Very recently, Weber and co-workers suggested that clin-
ically relevant doses (equivalent to approximately 50∼301 
mg/70 kg human/day) of morphine increases the renal path-
ology in sickle mice. The authors employed three transgenic 
murine models expressing varying levels of sickle haemo-
globin (Hbs), which included hBERK1 (∼26% Hbs), NY1DD 
(∼40% Hbs), and BERK (∼99% Hbs) to determine whether 
the effect of morphine on the kidney is strain-specific and/or 
influenced by variability of sickle haemoglobin expression. 
Morphine treatment was shown to induce glomerular ex-
pansion, tubular dilatation, and intraglomerular and peri-
tubular congestion, increase in kidney mass in NY1DD 
mice by 23% (after 3 weeks) and by 40% in hBERK1 mice 
(after 6 weeks of treatment). Light microscopy showed in-
creased number of juxtaglomerular cells and extremely high 
intraglomerular congestion in morphine treated mice [60]. 

Heroin

  Heroin (diacetylmorphine, diamorphine) is the most com-
monly abused drug. It can be sniffed, eaten, smoked, in-
jected subcutaneously or intravenously. It is often injected 
in combination of cocaine [61]. There are several renal com-
plications from its abuse [16]. In heroin addicts, the renal 
disease complication is very common and is associated with 
membranous nephropathy, nephrotic syndrome, acute glo-
merulonephritis, focal and segmental glomerulosclerosis 
(FSGS) amyloidosis, interstitial nephritis, and rhabdomyo-
lysis. Focal membranoproliferative glomerulonephritis with 
IgM and complement deposition is also found in heroin ad-
dicts with the nephrotic syndrome. There is a three-fold in-
creased risk for renal dysfunction in heroin users versus 
non-drug users [62,63].
  The patients with a history of a few months to 15 yr of 
heroin use are reported to develop hypertension and vary-
ing degrees of renal insufficiency, proteinuria, glomerulo-
sclerosis and urinary abnormalities. Global, segmental, or 
mesangial sclerosis; glomerular basement membrane thick-
ening; and epithelial cell foot process dropout has also been 
demonstrated in these patients [62]. Grishaman and co- 
workers reported the mesangial proliferation, membrano-
proliferative glomerulonephritis, dysproteinemias, and dia-
betic nephropathy in heroin users with renal disease. There 
are evidences that nephropathy is related to demographic, 
socioeconomic, or genetic factors of heroin users. FSGS is 
more predominant in black individuals and Memberano 
Proliferative Glomerulo Nephritis (MPGN) is more predom-
inant in white individuals. Grishman and co-workers con-
cluded that nephrotic syndrome of heroin addicts is mostly 
associated with focal segmental glomerular sclerosis and oc-
casionally with minimal change disease or focal global scle-
rosis [64]. The heroin overdose is reported to induce rhabdo-
myolysis resulting in myoglobinaemia and renal failure. 
The pathophysiology of rhabdomyolysis in heroin addiction 
includes acidosis, systemic hypoxia, muscle compression 
and direct toxic and immunologic effects of drug [65,66]. 
The heroin addicts are shown to develop severe bilateral 
compartment syndrome complicated by rhabdomyolysis and 
renal failure [67]. A recent case report has suggested that 
a single exposure of heroin may also lead to development 
of rhabdomyolysis and acute kidney injury requiring 
dialysis. Heroin associated renal complications may be a 
consequence of immunologic/hypersensitivity reaction or di-

rect myotoxic effect [68]. Renal amyloidosis is an important 
diagnosis in heroin addicts with proteinuria and nephrotic 
syndrome [69].

COCAINE

  Cocaine is an alkaloid extracted from a shrub (Erythrox-
ylon coca) which grows in the Andes mountains [70]. 
Cocaine abuse has been shown to result in both acute and 
chronic renal injury resulting in number of renal complica-
tions including ARF, renal infarction, and electrolyte im-
balance and UTIs in infants exposed to cocaine in uterus. 
All routes of cocaine administration (i.v, insufflations, and 
intranasal and free-basing crack cocaine) have been asso-
ciated with renal infarction. There is a dose relationship 
between maternal cocaine use and UTIs among infants 
born to cocaine abusing mothers [71]. Gottbrath and his 
co-workers observed a 14% incidence of UTI in cocaine ex-
posed infants. This incidence was greater than that in the 
control group of premature infants (3%) who were expected 
to have a high incidence of UTI on the basis of prematurity 
alone. It is important to note that this high incidence of 
UTI in cocaine exposed infants is entirely not due to con-
genital abnormalities. These investigators described that 
ischemia and hypoxia after cocaine abuse may form renal 
scars in utero, leading to UTIs [18]. A case report has 
shown that cocaine use is associated with proteinuria, leu-
kocytosis, elevated serum creatinine, renal artery dis-
section, thrombosis and renal infarction [72]. Other reports 
have also documented the development of cocaine induced 
renal infarction [73,74]. Renal infarction due to cocaine 
abuse is uncommon and is associated with fever, flank pain, 
urinary tract infection and nephrolithiasis. Renal infarction 
is characterised by severe persistent flank or abdominal 
pain associated with nausea or vomiting with or without 
elevated temperature. Cocaine-induced acute tubular ne-
crosis may be due to acute rhabdomyolysis [75,76]. The 
pathophysiology of cocaine-induced rhabdomyolysis may in-
volve ischemia, hyperthermia, direct toxicity of cocaine on 
muscle cells, and disseminated intravascular coagulation. 
In pregnancy, cocaine use may cause ARF due to abruptio 
placentae and preeclampsia [77]. Cocaine abuse may also 
cause ARF by precipitating/accelerating malignant hyper-
tension [78] and acute interstitial nephritis (AIN) induced 
by cocaine intoxication [79]. The development of anti-glo-
merular basement membrane antibodies in cocaine addicts 
may be responsible for development of glomerular nephritis 
and acute renal failure [80,81]. Recently, Valente and 
co-workers employed the primary cultured human proximal 
tubular epithelial cells (HPTEC’s) of the kidney to inves-
tigate the toxicity potential of cocaine and its metabolites 
such as benzoylecgonine (BE), ecgonine methyl ester (EME) 
and norcocaine. Cocaine is metabolized mainly by plasma 
and liver esterases, yielding the major metabolites BE, ec-
gonine and EME [82]. Anhydroecgonine methyl ester (AEME) 
and cocaethylene (CE) are two other metabolites known to 
potentiate cocaine-induced toxicity [83]. Only a minor part 
of cocaine is N-demethylated by the isoenzyme CYP3A, in 
humans, to norcocaine [84]. Norcocaine can be oxidized to 
N-hydroxynorcocaine and then to the free radical norco-
caine nitroxide, and it has been proposed that this redox 
cycle may result in the production of reactive oxygen spe-
cies which leads to oxidative stress [85,86]. Norcocaine is 
more potent than the parent compound, as it induces sig-
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nificant cell death at 2.5 mm, while cocaine produces tox-
icity at 5 mm. The administration of ketoconazole (KTZ), 
CYP3A inhibitor, was shown to inhibit cocaine-induced 
nephrotoxicity and key role of NCOC in cocaine-induced 
nephrotoxicity was reported. Furthermore cocaine induced 
cytotoxicity was found to involve intracellular glutathione 
depletion at low concentrations and to induce mitochondrial 
damage at higher concentrations [87]. The pathophysiology 
in cocaine related renal injury involves changes in the glo-
merular matrix synthesis, changes in the renal hemody-
namics and induction of renal atherogenesis [18]. The kid-
neys of cocaine abused patients have revealed mild me-
sangial expansion, interstitial fibrosis and intimal fibrosis 
affecting the interlobular and segmental arteries. Cocaine 
may enhance the renal cortical mRNA expression of tissue 
inhibitors of metalloproteinase-2 [17]. Accumulation of ma-
trix along with mesangial proliferation may increase the 
development of the glomerulosclerosis [19,88,89]. Cocaine 
induced activation of the renin angiotensin system (RAS) 
may also be responsible for fibrosis in the mesangial tissue 
as angiotensin-II is well reported to stimulate the pro-
duction of transforming growth factor-β, a potent fibrogenic 
agent [90]. Cocaine also enhances the epithelial-cell and 
mesangial-cell proliferation through interaction with mac-
rophages with the key role of interleukin-6 and trans-
forming growth factor-β [91].
  The exact mechanisms of cocaine-induced renal infarction 
are not reported, but enhancement of platelet aggregation, 
thromboxane synthesis, and endothelial and vasospastic in-
jury may contribute to renal infarction [18]. Experimental 
and autopsy findings confirm that cocaine is an accelerator 
of atherogenesis [92,93]. Cocaine increases the thrombox-
ane production, platelet aggregation, and synthesis of colla-
gen [94,95]. The studies have shown the arterial changes 
including medial thickening and luminal narrowing [96] 
along with severe renal arteriosclerosis in cocaine addicts 
[97,98]. Salcedo and Kim have shown the occurrence of re-
nal vasoconstriction after in utero exposure to cocaine and 
noted a significantly thicker vessel wall in the renal ar-
teries of infants and foetuses exposed to cocaine in utero 
compared with neonates and foetuses born to women who 
did not use cocaine during pregnancy [99]. The vaso-
constrictive factors including endothelin may also be in-
volved in the vascular changes caused by cocaine abuse 
[100]. Endothelin-1 (ET-1) is the major ET isoform involved 
in renal dysfunction, and the levels of this peptide are ele-
vated in women with cocaine intoxication during pregnancy 
[101]. The increased ET-1 levels in pregnant cocaine abus-
ers have been attributed to the ability of cocaine metabo-
lities to stimulate ET-1 release [18]. Cocaine stimulated 
ET-1 release may also involve the RAS, and this response 
is inhibited by angiotensin converting enzyme (ACE) in-
hibitors [102]. Cocaine-induced vasoconstrictive changes 
are due to inhibition of synaptosomal uptake of catechol-
amines, blockade of reuptake of norepinephrine in sym-
pathetically innervated tissues and increased release of 
norepinephrine and epinephrine from the adrenal medulla 
[18,103,104]. These vasoconstrictive and thrombotic effects 
of cocaine are responsible for cocaine-induced renal in-
farction [73]. Cocaine abuse has also been associated with 
an increase in oxidative stress in the kidney. The levels 
of intracellular glutathione, the most abundant cell thiol 
with antioxidant functions, are reduced in cultured kidney 
cells following exposure to cocaine [105].

NICOTINE

  The pathological role of smoking in the development of 
kidney injury has been well recognized [20,106-108]. Smo-
king accelerates the rate of progression of renal failure to 
end-stage renal disease in the renal patients [107] and may 
elevate the risk of chronic renal injury even in the healthy 
population [20,108]. The harmful effects of smoking may 
be due to many different components of tobacco, one of them 
is the alkaloid nicotine which is an important component 
of smoking-induced renal injury [109]. The addiction poten-
tial of smoking has also been attributed to presence of nic-
otine and it also induces pathological changes in other or-
gans including lung, heart and liver. 
  Nicotine is excreted by glomerular filtration and tubular 
secretion and has been found in high concentrations in the 
serum and the kidneys of the smokers [110]. Accordingly, 
the renal tubules are exposed to high levels of nicotine and 
its major metabolite, cotinine, which may cause direct tubu-
lar toxicity. Arany and co-workers selected a model in 
which cotinine concentrations stabilize at levels that are 
similar to those found in chronic smokers. The more salient 
finding of this study was that the chronic exposure to nic-
otine increases the severity of acute renal ischemia-re-
perfusion injury [21]. Tamaoki and co-workers studied the 
effects of nicotine on renal functions of normal and hyper-
cholesterolemic rats and reported that nicotine reduces the 
inulin clearance in control rats, but not in hypercholes-
terolemic rats. Nicotine did not change the renal blood flow 
in control rats, but increased in hypercholesterolemic rats; 
whereas the renal vascular resistance was increased in con-
trol rats and unchanged in hypercholesterolemic rats. An 
impairment in renal autoregulation may explain why inulin 
clearance was unchanged in hypercholesterolemic rats 
[111]. Jaimes and co-workers reported that administration 
of nicotine augments glomerular injury in terms of an in-
crease in the number of cells per glomerulus in a rat model 
of acute nephritis [112]. Hua and co-workers demonstrated 
that administration of nicotine worsens the severity of 
nephropathy in terms of increased urinary protein ex-
cretion (1-fold), glomerular hypertrophy, and mesangial 
area in diabetic mice [113]. Recently, Rezonzew and 
co-workers found that in rats with 5/6 nephrectomy the ad-
ministration of nicotine significantly increases the urinary 
protein excretion, worsens the glomerular injury and in-
creases the fibronectin, expression of NADPH oxidase 4 and 
transforming growth factor-β expression. Furthermore, the 
administration of nicotine to sham rats was reported to in-
crease total proteinuria but not albuminuria suggesting its 
direct effects on tubular protein reabsorption [114]. The 
prenatal exposure to nicotine in rats [115] as well as its 
prenatal exposure to maternal cigarette smoking in hu-
mans [116] has been associated with impaired kidney 
growth and reduced kidney volume [117]. Prenatal ex-
posure to nicotine leads to morphological and molecular 
changes in the kidneys which may contribute to foetal hy-
pertension in genetically vulnerable individuals [23].
  Smoking or chronic nicotine exposure might exacerbate 
acute renal injury by increasing oxidative stress [22]. Chro-
nic exposure to nicotine increases oxidative stress in the 
kidney [118,119], cultured proximal tubule [120], and me-
sangial cells [109]. Furthermore, the in vitro studies have 
also demonstrated that H2O2-induced reactive oxygen spe-
cies production is exacerbated upon chronic pretreatment 
with nicotine [21]. The critical role of oxygen free radicals 
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in mediating renal injury has been very well documented 
both in the preclinical as well as clinical studies. The possi-
ble source of nicotine-mediated ROS generation may be the 
NAPDPH oxidase system in cells [113].
  Toledo-Rodriguez and co-workers demonstrated an in-
creased expression of AT1b on the kidneys of offsprings of 
spontaneously hypertensive rats (SHR), exposed to nicotine 
during prenatal stage. The expression of the type AT1b sub-
type is mainly limited to the glomerulus where it may con-
tribute to the regulation of renal blood flow and blood pres-
sure [121]. DNA methylation plays an important role in 
regulating AT1b expression [122] and the studies suggest 
that nicotine may diminish DNA methylation by affecting 
DNA methyltransferases [123]. Accordingly, prenatal nic-
otine exposure induced development of foetal hypertension 
along with reduction in glomerular mass has been attrib-
uted to augmented AT1b expression in the kidneys in ge-
netically vulnerable individuals. In turn, the upregulated 
AT1b receptors in glomerulus may induce vasoconstriction 
of uteroplacental vasculature followed by uteroplacental 
under perfusion, and consequently reduction in the flow of 
nutrients and oxygen to the foetus. Nicotine also suppresses 
maternal appetite, which may further decrease supply of 
nutrients to the foetus. The up-regulation of AT1b in re-
sponse to prenatal exposure of nicotine in SHR has been 
possibly linked with up-regulation of genes in “glutamate 
receptor signaling” pathway involved in nervous system de-
velopment and function [23].
  The in vitro and in vivo treatment with nicotine-induced 
activation of inflammatory cascade may also be responsible 
for glomerular injury. The administration of nicotine sig-
nificantly increases the fibronectin and COX-2 expression 
and mediates the mesangial cell proliferation in nephritic 
rats [112]. Arany and co-workers demonstrated the involve-
ment of U-STAT3-dependent mechanism as inflammation 
in chronic nicotine-induced kidney injury. They reported 
the increased expression of U-STAT3 and levels of trans-
forming growth factor β-1 (TGF-β1), α-smooth muscle ac-
tin (α-SMA), fibronectin, monocyte chemotactic protein-1 
(MCP-1) in the ischemic kidneys of nicotine-exposed mice 
[124]. Rezonzew and co-workers demonstrated the role α
7-nAChR, one of the most important subunits of the 
nAChRs of nicotinic acetylcholine receptors (nAChRs), in 
nicotine-induced mesangial cell proliferation and hyper-
trophy by employing methyllicaconitine (α7-nAChR block-
er) [114]. An increased expression and phosphorylation of 
Akt in nicotine exposed diabetic mice and in human me-
sangial cells has also been reported suggesting that nicotine 
triggered Akt signalling may also be involved in renal dam-
age [113].

CAFFEINE

  Caffeine is the most important component in coffee and 
the concentration of this natural alkaloid is highest in 
coffee. Furthermore, it is also detected in tea leaves and 
other plants. In humans, it acts as a central nervous system 
stimulant and is the world’s most widely consumed psycho-
active drug [125]. It is known that caffeine mediates the 
renal natriuresis and diuresis in healthy and diseased liver 
through hepatorenal reflex. The hepatorenal reflex, acti-
vated by intrahepatic adenosine through A1 receptors, is 
involved in the regulation of urine production in healthy 
rats. Shirley and co-workers confirmed that a moderately 

high dose of caffeine causes a substantial acute increase 
in sodium excretion with diuresis. An increase in sodium 
excretion without any change in GFR indicates that the caf-
feine-induced natriuresis is due to the inhibition of frac-
tional tubular reabsorption. Caffeine-induced decreased 
tubular reabsorption is due to its pressor effect [126,127] 
and increase in renal perfusion pressure leading to an in-
crease in renal interstitial hydrostatic pressure [128]. 
Caffeine mediated blockade of A1-adenosine receptor [127] 
may also inhibit proximal tubular reabsorption [129,130]. 
Lee and his co-workers demonstrated the decreased ex-
pression of α-1 and β-1 subunits of Na＋/K＋-ATPase and 
type 3 Na＋/H＋ exchanger and increased expression of eNOS 
in the kidney following treatment with caffeine [131]. Nitric 
oxide has also been shown to inhibit both Na＋/H＋ exchange 
and Na＋/K＋-ATPase activity in the proximal tubules 
[132,133]. Caffeine mediated these changes may contribute 
to decreased proximal reabsorption. 
  Caffeine administration is associated with the rhabdo-
myolysis in coexisting severe hyponatremia. Kamijo and 
co-workers hypothesized that caffeine toxicity damages the 
muscle cells, which were fragile due to the potassium deple-
tion induced by the coexisting hyponatremia to result in 
severe rhabdomyolysis [24]. The prolonged administration 
of caffeine to animals with high-renin hypertension causes 
progressive degradation of renal function. Tofovic and 
Jackson investigated the effects of long-term caffeine con-
sumption on renal function in adult spontaneously hyper-
tensive heart failure (SHHF/Mcc-facp) rats, (model of 
high-renin hypertension) and was reported that glomerular 
filtration rate, creatinine clearance and inulin clearance 
was decreased and proteinurea was increased in caffeine 
treated animals [134]. Caffeine consumption aggravates the 
renal failure in nephropathy associated with the metabolic 
syndrome. Tofovic and co-workers examined the renal ef-
fects of caffeine consumption and the effects of collateral 
antioxidant therapy in young obese, diabetic ZSF1 rats. 
Caffeine greatly augments the proteinuria and increases re-
nal vascular resistance (RVR). Immunohistochemical anal-
ysis revealed significant glomerular and interstitial in-
flammation, proliferation, and fibrosis in control animals. 
Caffeine enhanced the influx of glomerular and interstitial 
macrophages influx, glomerular and tubular proliferative 
response, and glomerular collagen IV content in nephrop-
athy associated with the metabolic syndrome. It was sug-
gested that caffeine enhances the proteinuria and stim-
ulates some of the key proliferative mechanisms involved 
in glomerular remodeling and sclerosis through the inter-
action with adenosine receptors and interference with an-
ti-inflammatory and/or glomerular hemodynamic effects of 
adenosine [135]. 
  Caffeine (inhibitor of phosphodiesterase) also has the po-
tential to stimulate the progression of autosomal dominant 
polycystic kidney disease (ADPKD) [136-139]. ADPKD is 
the most common potentially lethal hereditary renal dis-
order in adults [140]. An increased production of cAMP in 
the kidney has an important role in the pathogenesis of 
the disease because it stimulates transepithelial secretion 
and accumulation of cyst fluid as well as cell proliferation 
[136,141]. Belibi and co-workers described that caffeine in-
creases the production of cAMP in renal epithelial cells and 
contributes in the progression of ADPKD [142].
  Cai and his co-workers described that caffeine, acet-
aminophen and salicylic acid toxic effects on the passage-1 
Rat Renal Inner Medullary Collecting Duct Cells (p1rIMCD) 
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and effects of acetaminophen and caffeine are strongly 
additive. An increase in proliferation along with DNA dam-
age and apoptosis has been observed in these cells. Caffeine 
alters the pathways involved in the cellular response to 
DNA damage. It reduces DNA damage-induced cell cycle 
arrest in G1, S, and G2/M, abolishes the G2/M checkpoint 
by inhibiting ATM kinase activity [143]. These kinases are 
activated by DNA damage and associated with DNA repair 
accompanied by cell cycle arrest [144]. Inhibition of 
ATM/ATR kinases by caffeine is a mechanism that might 
impair repair of the DNA damage. Caffeine also blocks p53 
activation in response to DNA damage and blocks the re-
pair of DNA damage caused by acetaminophen [145].
  Tofovic and his co-workers investigated the chronic ef-
fects of caffeine on renal function and structure in pur-
omycin aminonucleoside (PAN)-induced nephropathy. Ca-
ffeine consumption significantly augmented PAN-induced 
proteinuria after PAN injections. The injection of PAN is 
associated with decrease in urinary sodium excretion, de-
velopment of ascites, and reduction in creatinine clearance 
[146]. In PAN-rats, caffeine treatment for 23 weeks sig-
nificantly reduced inulin clearance, increased renal vas-
cular resistance, potentiates the development of more se-
vere tubulointerstitial damage and glomerulosclerosis [147].

ALCOHOL

  Both acute and chronic alcohol consumption can com-
promise the kidney function [25] and its consumption has 
been shown to reduce renal function by promoting inter-
stitial oedema and renal hypertrophy [26]. Chronic alcohol 
abuse increases the risk of acute renal failure (ARF) in un-
obstructed acute pyelonephritis [148] and also leads to de-
velopment of renal papillary necrosis [149,150]. Alcohol 
consumption is a probable risk factor for end stage renal 
disease (ESRD) [27] and its chronic use has been associated 
with immunoglobulin A nephropathy [151], and renal papil-
lary necrosis [150]. Alcohol consumption may potentiate the 
nephrotoxicity of lead [152] and antiinflammatory drugs 
[153]. The patients with postinfectious glomerulonephritis 
who consume alcohol may be at increased risk of pro-
gression to chronic renal failure [154]. Consumption of more 
than two alcoholic beverages per day has been associated 
with fourfold increase in the risk of ESRD [27]. Alcohol con-
sumption may increase the risk of kidney failure by initiat-
ing and/or promoting atherogenic risk factors, such as high 
blood pressure [155,156], hyperuricemia [157], insulin re-
sistance [158], and diabetes [159]. 
  Alcohol inhibits the release of antidiuretic hormone 
(ADH), which promotes the formation of concentrated urine 
by inducing the kidneys to conserve fluids. In the absence 
of ADH, segments of the kidney’s tubule system become im-
permeable to water, thus preventing it from being re-
absorbed into the body. Under these conditions, the urine 
formed is dilute and electrolyte concentration in the blood 
simultaneously rises [25]. Gueye and his colleagues esti-
mated the effect of alcohol dependency on renal graft and 
recipient survival and concluded that a history of alcohol 
dependency at the time of onset of ESRD is associated with 
shorter graft and patient survival [160]. The possible rea-
son behind shorter graft survival is that alcohol modulates 
the immune system by increasing the circulating IgA levels 
which could be related to antibody production and dysregu-
lation of cytokine production [161]. The prolonged use of 

alcohol activates the monocytes and macrophages to in-
crease the generation of proinflammatory cytokines includ-
ing TNF-α, interleukin (IL)-1, IL-6 and IL-8 [162]. In addi-
tion, chronic alcohol ingestion causes severe oxidative stress 
and depletion of the antioxidant glutathione [163]. The pro-
fibrotic cytokine transforming growth factor (TGF-β) has 
been associated with the development of chronic allograft 
nephropathy, which is characterized by renal graft fibrosis 
leading to early loss of function [164]. In the animal model, 
chronic alcohol ingestion has been demonstrated to increase 
the expression of TGF-β [165].
  A study has reported that alcohol plays an important role 
in the onset of both acute pancreatitis and rhabdomyolysis 
[166]. Pezzilli and co-workers suggested that renal failure 
that follows acute pancreatitis is partly due to rhabdomyol-
ysis and elevated serum concentrations of myoglobin [167]. 
Electrolyte abnormalities caused by alcohol intake are also 
important in muscle damage. Ethanol intoxication involves 
water-electrolyte and acid-base imbalance by excessive uri-
nary excretion of calcium, magnesium, phosphate leading 
to development of metabolic acidosis, hypomagnesemia, hy-
pocalcaemia and hypophosphatemia [168]. De Marchi and 
his co-workers evaluated the alcohol-induced abnormalities 
of renal function and assessed the relation between renal 
dysfunction and electrolyte imbalance. They found that the 
patients with chronic alcoholism have a variety of renal 
tubular abnormalities that occur in the presence of normal 
glomerular filtration and these abnormalities were rever-
sible that disappear after four weeks of abstinence [169].
  Various studies have indicated that ethanol interferes 
with the carrier functions of proximal tubular cells by de-
creasing the Na＋/K＋-ATPase activity [170-172]. The pa-
tients with chronic alcoholism have increased fractional ex-
cretion of β-2-microglobulin, urinary excretion of N-ace-
tyl-d-glucosaminidase (a lysosomal enzyme from the prox-
imal tubules) and alanine aminopeptidase suggesting the 
presence of proximal tubular defects [173,174]. Oxidation 
of ethanol by alcohol dehydrogenase generates acetalde-
hyde, and the oxidation of acetaldehyde by acetaldehyde 
dehydrogenase generates free radical oxygen species that 
are capable of damaging the cell membranes. The effect of 
ethanol in decreasing the Na＋/K＋-ATPase activity in the 
proximal tubular cells may decrease the tubular re-
absorption of calcium [175]. De Marchi et al. reported the 
deleterious effects of prenatal exposure to ethanol on post-
natal renal function [169]. The rats exposed to ethanol dur-
ing foetal life had defects in potassium excretion, in-
complete renal tubular acidosis, and impaired urine-con-
centrating ability [176,177]. Chronic alcoholism also causes 
acidosis due to the increased generation of keto acids 
[178,179] and the patients with metabolic acidosis have im-
paired renal acidification ability [169]. Alcohol directly af-
fects the kidneys by altering its form and structure [25]. 
There is disorganisation of the proximal tubules with dis-
orientation of microvilli and luminal casts. Some proximal 
tubule cells exhibit partial degeneration as evidenced by 
the reduced height of the cells and the presence of a prom-
inent luminal area containing cellular debris while the oth-
er cells exhibit a large number of dense bodies in their 
cytoplasm. Some distal tubule cells even exhibit degener-
ation of their apical cytoplasm [180].
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CONCLUSION

  The drugs of abuse potential have been shown to induce 
the renal toxicity and various mechanisms have also been 
explored to understand the mechanisms involved in renal 
toxicity. However, there is a need to understand the molec-
ular mechanisms involved in mediating renal injury, so as 
to establish the effective targets that may be modulated 
to attenuate renal toxicity. 
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