References
- Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-6. https://doi.org/10.1038/288373a0
- Feletou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006;291:H985-1002. https://doi.org/10.1152/ajpheart.00292.2006
- Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010;459:923-39. https://doi.org/10.1007/s00424-010-0808-2
- Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004;109(23 Suppl 1):III27-32. https://doi.org/10.1161/01.CIR.0000115644.35804.8B
- Bayir H. Reactive oxygen species. Crit Care Med 2005;33(12 Suppl):S498-501. https://doi.org/10.1097/01.CCM.0000186787.64500.12
- Gomes A, Costa D, Lima JL, Fernandes E. Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen and nitrogen species? Bioorg Med Chem 2006;14:4568-77. https://doi.org/10.1016/j.bmc.2006.02.023
- Chen SX, Song T, Zhou SH, Liu YH, Wu SJ, Liu LY. Protective effects of ACE inhibitors on vascular endothelial dysfunction induced by exogenous advanced oxidation protein products in rats. Eur J Pharmacol 2008;584:368-75. https://doi.org/10.1016/j.ejphar.2008.02.020
- Lazar HL. Role of angiotensin-converting enzyme inhibitors in the coronary artery bypass patient. Ann Thorac Surg 2005;79:1081-9. https://doi.org/10.1016/j.athoracsur.2004.05.046
- Sun JZ, Cao LH, Liu H. ACE inhibitors in cardiac surgery: current studies and controversies. Hypertens Res 2011;34: 15-22. https://doi.org/10.1038/hr.2010.188
- Benzie IF, Tomlinson B. Antioxidant power of angiotensin- converting enzyme inhibitors in vitro. Br J Clin Pharmacol 1998;45:168-9.
- Scribner AW, Loscalzo J, Napoli C. The effect of angiotensin- converting enzyme inhibition on endothelial function and oxidant stress. Eur J Pharmacol 2003;482:95-9. https://doi.org/10.1016/j.ejphar.2003.10.002
- Luscher TF, Boulanger CM, Dohi Y, Yang ZH. Endotheliumderived contracting factors. Hypertension 1992;19:117-30. https://doi.org/10.1161/01.HYP.19.2.117
- Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333:664-6. https://doi.org/10.1038/333664a0
- Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 2009;4: 71-95. https://doi.org/10.1146/annurev.pathol.4.110807.092155
- Munzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 2005;25:1551-7. https://doi.org/10.1161/01.ATV.0000168896.64927.bb
- Zou MH, Cohen R, Ullrich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium 2004;11:89-97. https://doi.org/10.1080/10623320490482619
- Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003;111: 1201-9. https://doi.org/10.1172/JCI200314172
- Zhang R, Al-Lamki R, Bai L, et al. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 2004;94:1483-91. https://doi.org/10.1161/01.RES.0000130525.37646.a7
- Jackson CV, Mickelson JK, Stringer K, Rao PS, Lucchesi BR. Electrolysis-induced myocardial dysfunction: a novel method for the study of free radical mediated tissue injury. J Pharmacol Methods 1986;15:305-20. https://doi.org/10.1016/0160-5402(86)90010-0
- Peters SL, Mathy MJ, Pfaffendorf M, van Zwieten PA. Reactive oxygen species-induced aortic vasoconstriction and deterioration of functional integrity. Naunyn Schmiedebergs Arch Pharmacol 2000;361:127-33. https://doi.org/10.1007/s002109900148
- de Groot AA, Mathy MJ, van Zwieten PA, Peters SL. Antioxidant activity of nebivolol in the rat aorta. J Cardiovasc Pharmacol 2004;43:148-53. https://doi.org/10.1097/00005344-200401000-00022
- Wambi-Kiesse CO, Katusic ZS. Inhibition of copper/zinc superoxide dismutase impairs NO.-mediated endothelium-dependent relaxations. Am J Physiol 1999;276(3 Pt 2):H1043-8.
- Margoliash E, Novogrodsky A. A study of the inhibition of catalase by 3-amino-1:2:4:-triazole. Biochem J 1958;68: 468-75. https://doi.org/10.1042/bj0680468
- Chopra M, Scott N, McMurray J, et al. Captopril: a free radical scavenger. Br J Clin Pharmacol 1989;27:396-9. https://doi.org/10.1111/j.1365-2125.1989.tb05384.x
- Goldschmidt JE, Tallarida RJ. Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-der ived relaxing factor. J Pharmacol Exp Ther 1991;257:1136-45.
- Mittra S, Singh M. Possible mechanism of captopril induced endothelium-dependent relaxation in isolated rabbit aorta. Mol Cell Biochem 1998;183:63-7. https://doi.org/10.1023/A:1006854313163
- Pi XJ, Chen X. Captopril and ramiprilat protect against free radical injury in isolated working rat hearts. J Mol Cell Cardiol 1989;21:1261-71. https://doi.org/10.1016/0022-2828(89)90672-X
- Fujita N, Manabe H, Yoshida N, et al. Inhibition of angiotensin- converting enzyme protects endothelial cell against hypoxia/ reoxygenation injury. Biofactors 2000;11:257-66. https://doi.org/10.1002/biof.5520110404
- Fernandes E, Costa D, Toste SA, Lima JL, Reis S. In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 2004;37: 1895-905. https://doi.org/10.1016/j.freeradbiomed.2004.09.001
- Duchene J, Ahluwalia A. The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol 2009;9:125-31. https://doi.org/10.1016/j.coph.2008.11.011
Cited by
- Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats vol.384, pp.1, 2013, https://doi.org/10.1007/s11010-013-1788-2
- Antioxidant effect of muscle relaxants (vecuronium, rocuronium) on the rabbit abdominal aortic endothelial damage induced by reactive oxygen species vol.65, pp.6, 2013, https://doi.org/10.4097/kjae.2013.65.6.552
- Enalapril attenuates ischaemic brain oedema and protects the blood–brain barrier in rats via an anti‐oxidant action vol.41, pp.3, 2014, https://doi.org/10.1111/1440-1681.12210
- Erectile dysfunction drugs and oxidative stress in the liver of male rats vol.2, pp.None, 2013, https://doi.org/10.1016/j.toxrep.2015.06.002
- Pharmacotherapy and analysis of gaseous mediators in hypertensive patients vol.49, pp.1, 2013, https://doi.org/10.1590/s0080-623420150000100009
- Potential interactions of prescription and over‐the‐counter medications having antioxidant capabilities with radiation and chemotherapy vol.137, pp.11, 2013, https://doi.org/10.1002/ijc.29208
- Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells vol.8, pp.13, 2017, https://doi.org/10.18632/oncotarget.15356
- Influence of the AT1 Receptor Antagonists Telmisartan and Losartan on Reproduction and Offspring After Paternal Exposure to Ionizing Radiation vol.26, pp.5, 2013, https://doi.org/10.1177/1933719118783251
- Antihypertensive Effects of Polyphenolic Extract from Korean Red Pine ( Pinus densiflora Sieb. et Zucc.) Bark in Spontaneously Hypertensive Rats vol.9, pp.4, 2020, https://doi.org/10.3390/antiox9040333
- Erectile dysfunction drugs altered the activities of antioxidant enzymes, oxidative stress and the protein expressions of some cytochrome P 450 isozymes involved in the steroidogenesis of vol.15, pp.11, 2013, https://doi.org/10.1371/journal.pone.0241509
- ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury vol.19, pp.12, 2013, https://doi.org/10.3390/md19120655