DOI QR코드

DOI QR Code

Antioxidant Effect of Captopril and Enalapril on Reactive Oxygen Species-Induced Endothelial Dysfunction in the Rabbit Abdominal Aorta

  • Kim, Ji Hoon (Department of Medicine, Sicho Subcenter, Seocheon County Public Health Center) ;
  • Kim, Hyuck (Department of Thoracic and Cardiovascular Surgery, Hanyang University Seoul Hospital, Hanyang University College of Medicine) ;
  • Kim, Young Hak (Department of Thoracic and Cardiovascular Surgery, Hanyang University Seoul Hospital, Hanyang University College of Medicine) ;
  • Chung, Won-Sang (Department of Thoracic and Cardiovascular Surgery, Hanyang University Seoul Hospital, Hanyang University College of Medicine) ;
  • Suh, Jung Kook (Department of Anesthesiology, Hanyang University Seoul Hospital, Hanyang University College of Medicine) ;
  • Kim, Sung Jin (Department of Thoracic and Cardiovascular Surgery, Hanyang University Seoul Hospital, Hanyang University College of Medicine)
  • Received : 2012.05.04
  • Accepted : 2012.09.20
  • Published : 2013.02.05

Abstract

Background: Reactive oxygen species (ROS) are known to be related to cardiovascular diseases. Many studies have demonstrated that angiotensin-converting enzyme inhibitors have beneficial effects against ROS. We investigated the antioxidant effect of captopril and enalapril in nitric oxide mediated vascular endothelium-dependent relaxations. Materials and Methods: Isolated rabbit abdominal aorta ring segments were exposed to ROS by electrolysis of the organ bath medium (Krebs-Henseleit solution) after pretreatment with various concentrations (range, $10^{-5}$ to $3{\times}10^{-4}$ M) of captopril and enalapril. Before and after electrolysis, the endothelial function was measured by preconstricting the vessels with norepinephrine ($10^{-6}$ M) followed by the cumulative addition of acetylcholine (range, $3{\times}10^{-8}$ to $10^{-6}$ M). The relevance of the superoxide anion and hydrogen peroxide scavenging effect of captopril and enalapril was investigated using additional pretreatments of diethyldithiocarbamate (DETCA, 0.5 mM), an inhibitor of Cu/Zn superoxide dismutase, and 3-amino-1,2,4-triazole (3AT, 50 mM), an inhibitor of catalase. Results: Both captopril and enalapril preserved vascular endothelium-dependent relaxation after exposure to ROS in a dose-dependent manner (p<0.0001). Pretreatment with DETCA attenuated the antioxidant effect of captopril and enalapril (p<0.0001), but pretreatment with 3AT did not have an effect. Conclusion: Both captopril and enalapril protect endothelium against ROS in a dose-dependent fashion in isolated rabbit abdominal aortas. This protective effect is related to superoxide anion scavenging.

Keywords

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373-6. https://doi.org/10.1038/288373a0
  2. Feletou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006;291:H985-1002. https://doi.org/10.1152/ajpheart.00292.2006
  3. Forstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010;459:923-39. https://doi.org/10.1007/s00424-010-0808-2
  4. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004;109(23 Suppl 1):III27-32. https://doi.org/10.1161/01.CIR.0000115644.35804.8B
  5. Bayir H. Reactive oxygen species. Crit Care Med 2005;33(12 Suppl):S498-501. https://doi.org/10.1097/01.CCM.0000186787.64500.12
  6. Gomes A, Costa D, Lima JL, Fernandes E. Antioxidant activity of beta-blockers: an effect mediated by scavenging reactive oxygen and nitrogen species? Bioorg Med Chem 2006;14:4568-77. https://doi.org/10.1016/j.bmc.2006.02.023
  7. Chen SX, Song T, Zhou SH, Liu YH, Wu SJ, Liu LY. Protective effects of ACE inhibitors on vascular endothelial dysfunction induced by exogenous advanced oxidation protein products in rats. Eur J Pharmacol 2008;584:368-75. https://doi.org/10.1016/j.ejphar.2008.02.020
  8. Lazar HL. Role of angiotensin-converting enzyme inhibitors in the coronary artery bypass patient. Ann Thorac Surg 2005;79:1081-9. https://doi.org/10.1016/j.athoracsur.2004.05.046
  9. Sun JZ, Cao LH, Liu H. ACE inhibitors in cardiac surgery: current studies and controversies. Hypertens Res 2011;34: 15-22. https://doi.org/10.1038/hr.2010.188
  10. Benzie IF, Tomlinson B. Antioxidant power of angiotensin- converting enzyme inhibitors in vitro. Br J Clin Pharmacol 1998;45:168-9.
  11. Scribner AW, Loscalzo J, Napoli C. The effect of angiotensin- converting enzyme inhibition on endothelial function and oxidant stress. Eur J Pharmacol 2003;482:95-9. https://doi.org/10.1016/j.ejphar.2003.10.002
  12. Luscher TF, Boulanger CM, Dohi Y, Yang ZH. Endotheliumderived contracting factors. Hypertension 1992;19:117-30. https://doi.org/10.1161/01.HYP.19.2.117
  13. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333:664-6. https://doi.org/10.1038/333664a0
  14. Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol 2009;4: 71-95. https://doi.org/10.1146/annurev.pathol.4.110807.092155
  15. Munzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 2005;25:1551-7. https://doi.org/10.1161/01.ATV.0000168896.64927.bb
  16. Zou MH, Cohen R, Ullrich V. Peroxynitrite and vascular endothelial dysfunction in diabetes mellitus. Endothelium 2004;11:89-97. https://doi.org/10.1080/10623320490482619
  17. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003;111: 1201-9. https://doi.org/10.1172/JCI200314172
  18. Zhang R, Al-Lamki R, Bai L, et al. Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner. Circ Res 2004;94:1483-91. https://doi.org/10.1161/01.RES.0000130525.37646.a7
  19. Jackson CV, Mickelson JK, Stringer K, Rao PS, Lucchesi BR. Electrolysis-induced myocardial dysfunction: a novel method for the study of free radical mediated tissue injury. J Pharmacol Methods 1986;15:305-20. https://doi.org/10.1016/0160-5402(86)90010-0
  20. Peters SL, Mathy MJ, Pfaffendorf M, van Zwieten PA. Reactive oxygen species-induced aortic vasoconstriction and deterioration of functional integrity. Naunyn Schmiedebergs Arch Pharmacol 2000;361:127-33. https://doi.org/10.1007/s002109900148
  21. de Groot AA, Mathy MJ, van Zwieten PA, Peters SL. Antioxidant activity of nebivolol in the rat aorta. J Cardiovasc Pharmacol 2004;43:148-53. https://doi.org/10.1097/00005344-200401000-00022
  22. Wambi-Kiesse CO, Katusic ZS. Inhibition of copper/zinc superoxide dismutase impairs NO.-mediated endothelium-dependent relaxations. Am J Physiol 1999;276(3 Pt 2):H1043-8.
  23. Margoliash E, Novogrodsky A. A study of the inhibition of catalase by 3-amino-1:2:4:-triazole. Biochem J 1958;68: 468-75. https://doi.org/10.1042/bj0680468
  24. Chopra M, Scott N, McMurray J, et al. Captopril: a free radical scavenger. Br J Clin Pharmacol 1989;27:396-9. https://doi.org/10.1111/j.1365-2125.1989.tb05384.x
  25. Goldschmidt JE, Tallarida RJ. Pharmacological evidence that captopril possesses an endothelium-mediated component of vasodilation: effect of sulfhydryl groups on endothelium-der ived relaxing factor. J Pharmacol Exp Ther 1991;257:1136-45.
  26. Mittra S, Singh M. Possible mechanism of captopril induced endothelium-dependent relaxation in isolated rabbit aorta. Mol Cell Biochem 1998;183:63-7. https://doi.org/10.1023/A:1006854313163
  27. Pi XJ, Chen X. Captopril and ramiprilat protect against free radical injury in isolated working rat hearts. J Mol Cell Cardiol 1989;21:1261-71. https://doi.org/10.1016/0022-2828(89)90672-X
  28. Fujita N, Manabe H, Yoshida N, et al. Inhibition of angiotensin- converting enzyme protects endothelial cell against hypoxia/ reoxygenation injury. Biofactors 2000;11:257-66. https://doi.org/10.1002/biof.5520110404
  29. Fernandes E, Costa D, Toste SA, Lima JL, Reis S. In vitro scavenging activity for reactive oxygen and nitrogen species by nonsteroidal anti-inflammatory indole, pyrrole, and oxazole derivative drugs. Free Radic Biol Med 2004;37: 1895-905. https://doi.org/10.1016/j.freeradbiomed.2004.09.001
  30. Duchene J, Ahluwalia A. The kinin B(1) receptor and inflammation: new therapeutic target for cardiovascular disease. Curr Opin Pharmacol 2009;9:125-31. https://doi.org/10.1016/j.coph.2008.11.011

Cited by

  1. Diosgenin improves vascular function by increasing aortic eNOS expression, normalize dyslipidemia and ACE activity in chronic renal failure rats vol.384, pp.1, 2013, https://doi.org/10.1007/s11010-013-1788-2
  2. Antioxidant effect of muscle relaxants (vecuronium, rocuronium) on the rabbit abdominal aortic endothelial damage induced by reactive oxygen species vol.65, pp.6, 2013, https://doi.org/10.4097/kjae.2013.65.6.552
  3. Enalapril attenuates ischaemic brain oedema and protects the blood–brain barrier in rats via an anti‐oxidant action vol.41, pp.3, 2014, https://doi.org/10.1111/1440-1681.12210
  4. Erectile dysfunction drugs and oxidative stress in the liver of male rats vol.2, pp.None, 2013, https://doi.org/10.1016/j.toxrep.2015.06.002
  5. Pharmacotherapy and analysis of gaseous mediators in hypertensive patients vol.49, pp.1, 2013, https://doi.org/10.1590/s0080-623420150000100009
  6. Potential interactions of prescription and over‐the‐counter medications having antioxidant capabilities with radiation and chemotherapy vol.137, pp.11, 2013, https://doi.org/10.1002/ijc.29208
  7. Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells vol.8, pp.13, 2017, https://doi.org/10.18632/oncotarget.15356
  8. Influence of the AT1 Receptor Antagonists Telmisartan and Losartan on Reproduction and Offspring After Paternal Exposure to Ionizing Radiation vol.26, pp.5, 2013, https://doi.org/10.1177/1933719118783251
  9. Antihypertensive Effects of Polyphenolic Extract from Korean Red Pine ( Pinus densiflora Sieb. et Zucc.) Bark in Spontaneously Hypertensive Rats vol.9, pp.4, 2020, https://doi.org/10.3390/antiox9040333
  10. Erectile dysfunction drugs altered the activities of antioxidant enzymes, oxidative stress and the protein expressions of some cytochrome P 450 isozymes involved in the steroidogenesis of vol.15, pp.11, 2013, https://doi.org/10.1371/journal.pone.0241509
  11. ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury vol.19, pp.12, 2013, https://doi.org/10.3390/md19120655