DOI QR코드

DOI QR Code

Actual microstructure-based numerical method for mesomechanics of concrete

  • Chena, S. (Department of Civil Engineering, The University of Hong Kong) ;
  • Yueb, Z.Q. (Department of Civil Engineering, The University of Hong Kong) ;
  • Kwan, A.K.H. (Department of Civil Engineering, The University of Hong Kong)
  • Received : 2009.10.01
  • Accepted : 2011.12.06
  • Published : 2013.07.01

Abstract

This paper presents an actual microstructure-based numerical method to investigate the mechanical properties of concrete at mesoscopic level. Digital image processing technique is used to capture the concrete surface image and generate the actual 3-phase microstructure of the concrete, which consists of aggregate, matrix and interfacial transition zones. The microstructure so generated is then transformed into a mesh or grid for numerical analysis. A finite difference code FLAC2D is used for the numerical analysis to simulate the mechanical responses and failure patterns of the concrete. Several cases of concrete with different degrees of material heterogeneity and under different compression loading conditions have been analysed. From the numerical results, the effects of the internal material heterogeneities as well as the external confining stresses are studied. It is shown that the material heterogeneities arising from the presence of different phases and the existence of interfacial transition zones have great influence on the overall mechanical behaviour of concrete and that the numerically simulated behaviour of concrete with or without confining stresses applied agrees quite well with the general observations reported in the literature.

Keywords

References

  1. Akcaoglu, T., Tokyay, M. and Celik, T. (2005), "Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete", Cement Concrete Res., 35(2), 358-363. https://doi.org/10.1016/j.cemconres.2004.05.042
  2. Azevedo, N., May, I. and Lemos, I.J. (2002), "Numerical simulations of plain concrete under shear loading conditions", Numerical Modeling in Micromechanics via Particle Methods - Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany.
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech. ASCE, 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  4. Billaux, D., Detournay, C., Hart, R. and Rachez, X. (2001), "FLAC and numerical modeling in geomechanics", Proceedings of the 2nd International FLAC Symposium, Lyon, France.
  5. Brady, B.H.G. and Brown, E.T. (1992), Rock Mechanics for Underground Mining (2nd ed.), Chapman & Hall, London.
  6. Chen, S., Yue, Z.Q., Tham, L.G. and Lee, P.K.K. (2004a), "Modeling of the indirect tensile test for inhomogeneous granite using a digital image-based numerical method", Int. J. Rock Mech. Min. Sci., 41(3), 447 (SINOROCK Paper No. 2B01 in CDROM).
  7. Chen, S., Yue, Z.Q. and Tham, L.G. (2004b), "Digital image-based numerical modeling method for prediction of inhomogeneous rock failure", Int. J. Rock Mech. Min. Sci., 41(6), 939-957. https://doi.org/10.1016/j.ijrmms.2004.03.002
  8. Chermant, J.L. (2001), "Why automatic image analysis? An introduction to this issue", Cement Concrete Compos., 23(2-3), 127-131. https://doi.org/10.1016/S0958-9465(00)00077-9
  9. Chermant, J.L., Chermant, L., Coster, M., Dequiedt, A.S. and Redon, C. (2001), "Some fields of applications of automatic image analysis in civil engineering", Cement Concrete Compos, 23(2-3), 157-169. https://doi.org/10.1016/S0958-9465(00)00059-7
  10. Comby-Peyrot, I., Bernard, F., Bouchard, P.O., Bay, F. and Garcia-Diaz, E. (2009), "Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale: application to the alkali-silica reaction", Comput. Mater. Sci., 46(4), 1163-1177. https://doi.org/10.1016/j.commatsci.2009.06.002
  11. De Schutter, G. and Taerwe, L. (1993), "Random particle model for concrete based on Delaunay triangulation", Mater. Struct., 26(2), 67-73. https://doi.org/10.1007/BF02472853
  12. Diamond, S. and Huang, J.D. (2001), "The ITZ in concrete - a different view based on image analysis and SEM observations", Cement Concrete Compos., 23(2-3), 179-188. https://doi.org/10.1016/S0958-9465(00)00065-2
  13. Fang, Z. and Harrison, J.P. (2001), "A mechanical degradation index for rock", Int. J. Rock Mech. Min. Sci., 38(8), 1193-1199. https://doi.org/10.1016/S1365-1609(01)00070-3
  14. Fang, Z. and Harrison, J.P. (2002), "Development of a local degradation approach to the modeling of brittle fracture in heterogeneous rocks", Int. J. Rock Mech. Min. Sci., 39(4), 443-457. https://doi.org/10.1016/S1365-1609(02)00035-7
  15. ITASCA (1995), Fast Lagrangian Analysis of Continua (Version 3.3), Minnesota, USA.
  16. Kwan, A.K.H., Mora, C.F. and Chan, H.C. (1999a), "Particle shape analysis of coarse aggregate using digital image processing", Cement Concrete Res., 29(9), 1403-1410. https://doi.org/10.1016/S0008-8846(99)00105-2
  17. Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999b), "Mesoscopic study of concrete II: nonlinear finite element analysis", Comput. Struct., 70(5), 545-556. https://doi.org/10.1016/S0045-7949(98)00178-3
  18. Liao, K.Y., Chang, P.K., Peng, Y.N. and Yang, C.C. (2004), "A study on characteristics of interfacial transition zone in concrete", Cement Concrete Res., 34(6), 977-989. https://doi.org/10.1016/j.cemconres.2003.11.019
  19. Leite, J.P.B., Slowik, V. and Apel, J. (2007), "Computational model of mesoscopic structure of concrete for simulation of fracture processes", Comput. Struct., 85(17-18), 1293-1303. https://doi.org/10.1016/j.compstruc.2006.08.086
  20. Mindess, S. (1996), "Tests to determine the mechanical properties of the interfacial zone", Interfacial Transition Zone in Concrete: State-of-the-Art Report prepared by RILEM Technical Committee 108-ICC, Interfaces in Cementitious Composites, Toulouse, France.
  21. Mora, C.F. and Kwan, A.K.H. (2000), "Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing", Cement Concrete Res., 30(3), 351-358. https://doi.org/10.1016/S0008-8846(99)00259-8
  22. Mora, C.F., Kwan, A.K.H. and Chan, H.C. (1998), "Particle size distribution analysis of coarse aggregate using digital image processing", Cement Concrete Res., 28(6), 921-932. https://doi.org/10.1016/S0008-8846(98)00043-X
  23. Oliver, J.P., Maso, J.C. and Bourdette, B. (1995), "Interfacial transition zone in concrete", Adv. Cement Based Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
  24. Paterson, M.S. (1978), Experimental Rock Deformation: the Brittle Field, Springer, Berlin.
  25. Raghuprasad, B.K., Bhat, D.N. and Bhattacharya, G.S. (1998), "Simulation of fracture in a quasi-brittle material in direct tension - a lattice model", Eng. Fract. Mech., 61(3-4), 445-460. https://doi.org/10.1016/S0013-7944(98)00058-7
  26. Rempling, R. and Grassl, P. (2008), "A parametric study of the meso-scale modelling of concrete subjected to cyclic compression", Cement Concrete, 5(4), 359-373.
  27. Schlangen, E. and Van Mier, J.G.M. (1992), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Conrete Compos., 14(2), 105-118. https://doi.org/10.1016/0958-9465(92)90004-F
  28. Schlangen, E. and Garboczi, E.J. (1996), "New method for simulating fracture using an elastically uniform random geometry lattice", Int. J. Eng. Sci., 34(10), 1131-1144. https://doi.org/10.1016/0020-7225(96)00019-5
  29. Scrivener, K.L. and Pratt, P.L. (1996), "Characterisation of interfacial microstructure", Interfacial Transition Zone in Concrete: State-of-the-Art Report prepared by RILEM Technical Committee 108-ICC, Interfaces in Cementitious Composites, Toulouse, France.
  30. Sheng, Q., Yue, Z.Q., Lee, C.F., Tham, L.G. and Zhou, H. (2002), "Estimating the excavation disturbed zone in permanent shiplock slopes of the Three Gorges Project, China", Int. J. Rock Mech. Min. Sci., 39(2), 165-184. https://doi.org/10.1016/S1365-1609(02)00015-1
  31. The MathWorks Inc. (2007), Getting Started with MATLAB(R) 7, Website: http://www.mathworks.com/.
  32. Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  33. Wittmann, F.H., Roelfstra, P.E. and Sadouki, H. (1984), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248.
  34. Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behaviour", Finite Elements Anal. Design, 42(7), 623-636. https://doi.org/10.1016/j.finel.2005.11.008
  35. Yue, Z.Q., Chen, S. and Tham, L.G. (2003a), "Finite element modeling of geomaterials using digital image processing", Comput. Geo., 30(5), 375-397. https://doi.org/10.1016/S0266-352X(03)00015-6
  36. Yue, Z.Q., Chen, S. and Tham, L.G. (2003b), "Seepage analysis in inhomogeneous geomaterials using digital image processing based finite element method", Proceedings of the 12th Panamerican Conference for Soil Mechanics and Geotechnical Engineering and the 39th US Rock Mechanics Symposium, Soil and Rock America, Boston.
  37. Yue, Z.Q. and Morin, I. (1996), "Digital image processing for aggregate orientation in asphalt concrete mixtures", Can. J. Civil Eng., 23(2), 480-489. https://doi.org/10.1139/l96-052
  38. Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Construct., 14(5), 357-365. https://doi.org/10.1007/BF02478729
  39. Zhu, W.C., Teng, J.G. and Tang, C.A. (2004), "Mesomechanical model for concrete. Part I: Model development", Mag. Conc. Res., 56(6), 313-330. https://doi.org/10.1680/macr.2004.56.6.313

Cited by

  1. A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing vol.18, pp.2, 2017, https://doi.org/10.1631/jzus.A1500335
  2. Crack analysis of reinforced concrete members with and without crack queuing algorithm vol.70, pp.1, 2019, https://doi.org/10.12989/sem.2019.70.1.043
  3. Meso-scale modelling of stress effect on chloride diffusion in concrete using three-phase composite sphere model vol.52, pp.3, 2013, https://doi.org/10.1617/s11527-019-1355-8