DOI QR코드

DOI QR Code

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N. (Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia) ;
  • Abdullah, R. (Department of Structure and Materials, Faculty of Civil Engineering, Universiti Teknologi Malaysia) ;
  • Kueh, A.B.H. (Construction Research Centre, Universiti Teknologi Malaysia)
  • Received : 2012.02.17
  • Accepted : 2012.10.27
  • Published : 2013.07.01

Abstract

The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

Keywords

References

  1. ABAQUS/Explicit User's Manual, (2007), Version 6.7, Hibbitt, Karlsson & Sorensen, Inc.
  2. Abbas, H., Gupta, N.K. and Alam, M. (2004), "Nonlinear response of concrete beams and plates under impact loading", Int. J. Impact Eng., 30(8-9), 1039-1053. https://doi.org/10.1016/j.ijimpeng.2004.06.011
  3. Agardh, L. and Laine, L. (1999), "3D FE-simulation of high-velocity fragment perforation of reinforced concrete slabs", Int. J. Impact Eng., 22(9-10), 911-922. https://doi.org/10.1016/S0734-743X(99)00008-1
  4. Balakrishnan, S. and Murray, D.W. (1986), "Finite element prediction of reinforced concrete behavior", Struct. Engrg. Rep. No. 138, University of Alberta, Edmonton, Alberta, Canada.
  5. Chen, X.W., Li, X.L., Huang, F.L., Wu, H.J. and Chen, Y.Z. (2008), "Normal perforation of reinforced concrete target by rigid projectile", Int. J. Impact Eng., 35(10), 1119-1129. https://doi.org/10.1016/j.ijimpeng.2008.01.002
  6. Chen, Y. and May, I.M. (2009), "Reinforced concrete members under drop-weight impacts", Proceedings of the Institution of Civil Engineers: Structures and Buildings, 162(SB1), 45-56. https://doi.org/10.1680/stbu.2009.162.1.45
  7. Corbett, G.G., Reid, S.R. and Johnson, W. (1996), "Impact loading of plates and shells by free-flying projectiles: A review", Int. J. Impact Eng., 18(2), 141-230. https://doi.org/10.1016/0734-743X(95)00023-4
  8. DiMaggio, F.L. and Sandler, I.S. (1971), "Material model for granular soils", J. Eng. Mech. Div., 97, 935-950.
  9. Elwi, A. and Hrudey, M. (1989), "Finite element model for curved embedded reinforcement", J. Eng. Mech., 115(4), 740-757. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(740)
  10. Gilbert, R.I. and Warner, R.F. (1978), "Tension stiffening in reinforced concrete slabs", ASCE J. Struct. Div., 104(12), 1885-1900.
  11. Gomes, H.M. and Awruch, A.M. (2001), "Some aspects on three-dimensional numerical modelling of reinforced concrete structures using the finite element method", Adv. Eng. Software, 32(4), 257-277. https://doi.org/10.1016/S0965-9978(00)00093-4
  12. Hand, F.R., Pecknold, D.A. and Schnobrich, W.C. (1973), "Nonlinear layered analysis of RC plates and shells", ASCE J. Struct. Div., 99(7), 1491-1505.
  13. Islam, M. J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123. https://doi.org/10.12989/cac.2011.8.1.111
  14. Jofriet, J.C. and McNeice, G.M. (1971), "Finite element analysis of reinforced concrete slabs", ASCE J. Struct. Div., 97(3), 785-806.
  15. Lin, C.S. and Scordelis, A.C. (1975), "Nonlinear analysis of RC shells of general form", ASCE J. Struct. Div., 101(3), 523-538.
  16. Luccioni, B.M. and Luege, M. (2006), "Concrete pavement slab under blast loads", Int. J. Impact Eng., 32(8), 1248-1266. https://doi.org/10.1016/j.ijimpeng.2004.09.005
  17. Naaman, A.E. and Gopalaratnam, V.S. (1983), "Impact properties of steel fibre reinforced concrete in bending", Int. J. Cement Compos. Lightw. Concrete, 5(4), 225-233. https://doi.org/10.1016/0262-5075(83)90064-7
  18. Ong, K.C.G., Basheerkhan, M. and Paramasivam, P. (1999), "Resistance of fibre concrete slabs to low velocity projectile impact", Cement Concrete Compos., 21(5-6), 391-401. https://doi.org/10.1016/S0958-9465(99)00024-4
  19. Phillips, D.V. and Zienkiewicz, O.C. (1976), "Finite element non-linear analysis of concrete structures", Proc. Inst. Civ. Eng., 61, 59-88. https://doi.org/10.1680/iicep.1976.3503
  20. Rashid, Y.R. (1968), " Ultimate strength analysis of prestressed concrete pressure vessels", Nucl. Eng. Des., 7(4), 334-344. https://doi.org/10.1016/0029-5493(68)90066-6
  21. Rousseau, J., Frangin, E., Marin, P. and Daudeville, L. (2009), "Multidomain finite and discrete elements method for impact analysis of a concrete structure", Eng. Struct., 31(11), 2735-2743. https://doi.org/10.1016/j.engstruct.2009.07.001
  22. Sangi, A.J. and May, I.M. (2009), "High-mass, low velocity impacts on reinforced concrete slabs", 7th European LS-DYNA Conference, DYNAmore GmbH.
  23. Sawamoto, Y., Tsubota, H., Kasai, Y., Koshika, N. and Morikawa, H. (1998), "Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method", Nucl. Eng. Des., 179(2), 157-177. https://doi.org/10.1016/S0029-5493(97)00268-9
  24. Scanlon, A. and Murray, D.W. (1974), "Time-dependent reinforced concrete slab deflections", ASCE J. Struct. Div., 100(9), 1911-1924.
  25. Shiu, W., Donze, F.V. and Daudeville, L. (2009), "Influence of the reinforcement on penetration and perforation of concrete targets: A discrete element analysis", Int. J. Comput. Aid. Eng., 26(1-2), 29-45. https://doi.org/10.1108/02644400910924799
  26. Tahmasebinia, F. (2008), "Finite element simulation of reinforced concrete structures under impact accident", Struct. Survey, 26(5), 445 - 454. https://doi.org/10.1108/02630800810922784
  27. Tai, Y.S. and Tang, C.C. (2006), "Numerical simulation: the dynamic behavior of reinforced concrete plates under normal impact", Theor. Appl. Fract. Mech., 45(2), 117-127. https://doi.org/10.1016/j.tafmec.2006.02.007
  28. Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Simulation model of impact on reinforced concrete", Cement Concrete Res., 34(11), 2067-2077. https://doi.org/10.1016/j.cemconres.2004.03.019
  29. Teng, T.L., Chu, Y.A., Chang, F.A. and Shen, B.C. (2005), "Penetration resistance of reinforced concrete containment structures", Annal. Nucl.Energy, 32(3), 281-298. https://doi.org/10.1016/j.anucene.2004.10.001
  30. Zienkiewicz, O.C., Owen, D.R.J., Phillips, D.V. and Nayak, G.C. (1972), "Finite element methods in the analysis of reactor vessels", Nucl. Eng. Des., 20(2), 507-541. https://doi.org/10.1016/0029-5493(72)90125-2
  31. Zineddin, M. and Krauthammer, T. (2007), "Dynamic response and behavior of reinforced concrete slabs under impact loading", Int. J. Impact Eng., 34(9), 1517-1534. https://doi.org/10.1016/j.ijimpeng.2006.10.012

Cited by

  1. 3D modelling of reinforced concrete slab with yielding supports subject to impact load vol.21, pp.7-8, 2017, https://doi.org/10.1080/19648189.2016.1194330
  2. Experimental determination of Drucker-Prager yield criterion parameters for normal and high strength concretes under triaxial compression vol.112, 2016, https://doi.org/10.1016/j.conbuildmat.2016.02.127
  3. The use of ferrocement in the construction of squat grain silos vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.053
  4. Load capacity of high-strength reinforced concrete slabs by yield line theory vol.12, pp.6, 2013, https://doi.org/10.12989/cac.2013.12.6.819
  5. Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method vol.56, pp.6, 2015, https://doi.org/10.12989/sem.2015.56.6.917
  6. A Simplified Approach for Analysis and Design of Reinforced Concrete Circular Silos and Bunkers vol.12, pp.None, 2013, https://doi.org/10.2174/1874836801812010234
  7. Finite element investigation of the joints in precast concrete pavement vol.21, pp.5, 2013, https://doi.org/10.12989/cac.2018.21.5.547
  8. Experimental Investigation of Impact Behaviour of RC Slab with Different Reinforcement Ratios vol.24, pp.1, 2013, https://doi.org/10.1007/s12205-020-1168-x
  9. Evaluation of failure probability for RC slabs subjected to low-velocity impacts vol.72, pp.1, 2013, https://doi.org/10.1680/jmacr.17.00053
  10. Experimental Laboratory Testing on Behavior of Dowels in Concrete Pavements vol.13, pp.10, 2013, https://doi.org/10.3390/ma13102343
  11. Experimental and numerical investigation of impact behavior of reinforced concrete slab with different support conditions vol.21, pp.6, 2013, https://doi.org/10.1002/suco.202000216