DOI QR코드

DOI QR Code

Replicating the chemical composition of the binder for restoration of historic mortars as an optimization problem

  • Miriello, D. (DiBEST Dipartimento di Biologia, Ecologia e Scienze della Terra, Universita della Calabria) ;
  • Lezzerini, M. (Dipartimento di Scienze della Terra, Universita di Pisa) ;
  • Chiaravalloti, F. (Dipartimento di Fisica, Universita della Calabria) ;
  • Bloise, A. (DiBEST Dipartimento di Biologia, Ecologia e Scienze della Terra, Universita della Calabria) ;
  • Apollaro, C. (DiBEST Dipartimento di Biologia, Ecologia e Scienze della Terra, Universita della Calabria) ;
  • Crisci, G.M. (DiBEST Dipartimento di Biologia, Ecologia e Scienze della Terra, Universita della Calabria)
  • Received : 2013.02.14
  • Accepted : 2013.05.15
  • Published : 2013.10.25

Abstract

The present study aims to show how the problem of reproducing, as closely as possible, binders of historic mortars by mixing raw materials which are commercially available, can be formulated as a linear optimization problem. The study points out that by mixing five standard raw materials (end-members) it is possible to obtain mortar binders with the almost same chemical compositions of those determined on the historic and archaeological mortar samples studied in some recent scientific papers. An advanced function of the Microsoft Excel spreadsheet, the Solver add-in, was used for the calculation of the right amount of each raw material to be mixed for producing the new binders. This approach could be useful to provide an optimal solution in the process of restoration of ancient monuments, where it is necessary to replace the historic mortars with new highly compatible repair mortars.

Keywords

References

  1. Anastasiou, M., Hasapis, T.H., Zorba, T., Pavlidou, E., Chrissafis, K. and Paraskevopoulos, K.M. (2006), "TG-DTA and FTIR analyses of plasters from byzantine monuments in balkan region - comparative study", J. Therm. Anal. Calorim., 84, 27-32. https://doi.org/10.1007/s10973-005-7211-9
  2. Arcolao, C. (2001), Le Ricette del Restauro. Malte, intonaci, stucchi dal XV al XIX sec., Marsilio ed., Vicenza.
  3. Barba, L., Blancas, J., Manzanilla, L.R., Ortiz, A., Barca, D., Crisci, G.M., Miriello, D. and Pecci, A. (2009), "Provenance of the limestone used in Teotihuacan (Mexico): a methodological approach, Archaeometry", 51, 525-545. https://doi.org/10.1111/j.1475-4754.2008.00430.x
  4. Beck, K. and Al-Mukhtar, M. (2008), "Formulation and characterization of an appropriate lime-based mortar for use with a porous limestone", Environ. Geol., 56,715-727. https://doi.org/10.1007/s00254-008-1299-8
  5. Biernacki, J.J., Williams, P.J. and Stutzman, E.P. (2001), "Kinetics of reaction of calcium hydroxide and fly ash", ACI Mater. J., 98, 340-349.
  6. Binda, L., Baronio, G., Tiraboschi, C. and Tedeschi, C. (2003), "Experimental research for the choice of adequate materials for the reconstruction of the Cathedral of Noto", Constr. Build. Mater., 17, 629-639. https://doi.org/10.1016/S0950-0618(03)00059-X
  7. Crisci, G.M., Franzini, M., Lezzerini, M., Mannoni, T. and Riccardi, M.P. (2004) "Ancient mortars and their binder", Period. Mineral., 73, 259-268.
  8. Crisci and Miriello (2006), I materiali del costruito tradizionale: un mondo ancora in gran parte da scoprire, Archeometria del Costruito, Edificato Storico - Materiali, Strutture e Rischio Sismico (Eds. Crisci, G.M. and Gattuso, C.), Edipuglia, Bari, 107-112.
  9. El-Turki, A., Ball, R.J. and Allen, G.C. (2007), "The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime", Cement Concrete Res., 37, 1233-1240. https://doi.org/10.1016/j.cemconres.2007.05.002
  10. Fletcher, R. (1987), Methods of optimization, John Wiley & Sons, New York.
  11. Franzini, M., Leoni, L., Lezzerini, M. and Sartori, F. (1999), "On the binder of some ancient mortars", Miner. Petrol., 67, 59-69. https://doi.org/10.1007/BF01165116
  12. Franzini, M., Leoni, L., Lezzerini, M. and Sartori, F. (2000a), "The mortar of the "leaning tower" of Pisa: the product of a medieval technique for preparing high strength mortars", Eur. J. Mineral., 12, 1151-1163. https://doi.org/10.1127/ejm/12/6/1151
  13. Franzini, M., Leoni, L. and Lezzerini, M. (2000b), "A procedure for determining the chemical composition of binder and aggregate in ancient mortars: its application to mortars from some medieval buildings in Pisa", J. Cult. Herit., 1, 365-373. https://doi.org/10.1016/S1296-2074(00)01092-X
  14. Fylstra, D., Lasdon, L., Watson, J. and Waren, A. (1998), "Design and use of the microsoft excel solver", Interfaces, 28, 29-55. https://doi.org/10.1287/inte.28.5.29
  15. Goldsworthy, H. and Min, Z. (2009), "Mortar studies towards the replication of roman concrete", Archaeometry, 51, 932-946. https://doi.org/10.1111/j.1475-4754.2009.00450.x
  16. Güleç, A. and Tulun, T. (1997), "Physico-chemical and petrographical studies of old mortars and plasters of Anatolia", Cement Concrete Res., 27, 227-234. https://doi.org/10.1016/S0008-8846(97)00005-7
  17. Hassan, K.E., Brooks, J.J. and Al-Alawi, L. (2001), "Compatibility of repair mortars with concrete in hot-dry environment", Cement Concrete Comp., 23, 93-101. https://doi.org/10.1016/S0958-9465(00)00073-1
  18. Klisińska-Kopacz, A., Tiŝlova, R., Adamski, G. and Kozłowski, R. (2010), "Pore structure of historic and repair Roman cement mortars to establish their compatibility", J. Cult. Herit., 11, 404-410. https://doi.org/10.1016/j.culher.2010.03.002
  19. Lanas, J., Pe´rez Bernal, J.L., Bello, M.A. and Alvarez, J.I. (2006), "Mechanical properties of masonry repair dolomitic lime-based mortars", Cement Concrete Res., 36, 951-960. https://doi.org/10.1016/j.cemconres.2005.10.004
  20. Lezzerini, M. (2005), "The mortars of the Fortezza delle Verrucole - S. Romano in Garfagnana (LU)", Period. Mineral., 74, 55-67.
  21. Liebig, E. and Althaus, E. (1998), "Pozzolanic activity of volcanic tuff and suevite: effects of calcination", Cement Concrete Res., 28, 567-575. https://doi.org/10.1016/S0008-8846(98)00024-6
  22. Maravelaki-Kalaitzakia, P., Arbakolas, A., Karatasiosc, I. and Kilikoglou, V. (2005), "Hydraulic lime mortars for the restoration of historic masonry in crete", Cement Concrete Res., 35, 1577-1586. https://doi.org/10.1016/j.cemconres.2004.09.001
  23. Mccarter, W.J. and Tran, D. (1996), "Monitoring pozzolanic activity by direct activation with calcium hydroxide", Constr. Build. Mater., 10, 179-184. https://doi.org/10.1016/0950-0618(95)00089-5
  24. Meir, I.A., Freidin, C. and Gilead, I. (2005), "Analysis of byzantine mortars from the negev desert, Israel, and subsequent environmental and economic implications", J. Archaeol. Sci., 32, 767-773. https://doi.org/10.1016/j.jas.2004.12.009
  25. Miriello, D. (2005), Studio petrografico, mineralogico e geochimico dei materiali lapidei naturali e artificiali del castello svevo di Rocca Imperiale (CS): caratterizzazione e provenienza, Ph.D Thesis, University of Calabria, Department of Earth Sciences, Arcavacata di Rende (CS-Italy).
  26. Miriello, D. and Crisci, G.M. (2006), "Image analysis and flatbed scanners. A visual procedure in order to study the macro-porosity of the archaeological and historic mortars", J. Cult. Herit., 7, 186-192. https://doi.org/10.1016/j.culher.2006.03.003
  27. Miriello, D. and Crisci, G.M. (2007), "Mixing and provenance of raw materials in the bricks from the Svevian castle of Rocca Imperiale (North Calabria - Italy)", Eur. J. Mineral., 19, 137-144. https://doi.org/10.1127/0935-1221/2007/0019-0137
  28. Miriello, D., Barca, D., Bloise, A., Ciarallo, A., Crisci, G.M., De Rose, T., Gattuso, C., Gazineo, F. and La Russa, M.F. (2010a), "Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis", J. Archaeol. Sci., 37, 2207-2223. https://doi.org/10.1016/j.jas.2010.03.019
  29. Miriello, D., Bloise, A., Crisci, G.M., Barrese, E. and Apollaro, C. (2010b), "Effects of milling: possible factor influencing the durability of historic mortars", Archaeometry, 52, 668-679.
  30. Miriello, D., Bloise, A., Crisci, G.M., Apollaro, C. and La Marca, A. (2011a), "Characterisation of archaeological mortars and plasters from kyme (Turkey)", J. Archaeol. Sci., 38, 794-804. https://doi.org/10.1016/j.jas.2010.11.002
  31. Miriello, D., Barca, D., Crisci, G.M., Barba, L., Blancas, J., Ortíz, A., Pecci, A. and López Luján, L. (2011b), "Characterization and provenance of lime plasters from the templo mayor of tenochtitlan (Mexico City)", Archaeometry, 53, 1119-1141. https://doi.org/10.1111/j.1475-4754.2011.00603.x
  32. Miriello, D., Bloise, A., Crisci, G.M., Cau Ontiveros, M.Á., Pecci, A. and Riera Rullan, M. (in press), "Compositional analyses of mortars from the late antique site of son peretó (Mallorca, Balearic Islands, Spain): Archaeological Implications", Archaeometry.
  33. Moropoulou. A., Bakolas, A. and Bisbikou, K. (2000), "Investigation of the technology of historic mortars", J. Cult. Herit, 1, 45-58. https://doi.org/10.1016/S1296-2074(99)00118-1
  34. Moropoulou, A., Bakolas, A. and Aggelakopoulou, E. (2004), "Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis", Thermochim. Acta, 420, 35-140.
  35. Riccardi, M.P., Lezzerini, M., Caró, F., Franzini, M. and Messiga, B. (2007), "Microtextural and microchemical studies of hydraulic ancient mortars: Two analytical approaches to understand pre-industrial technology processes", J. Cult. Herit., 8, 350-360. https://doi.org/10.1016/j.culher.2007.04.005
  36. Roszczynialski, W. (2002), "Determination of pozzolanic activity of materials by thermal analysis", J. Therm. Anal. Calorim., 70, 387-392. https://doi.org/10.1023/A:1021660020674
  37. Sánchez De Rojas, M.I. and Frías, M. (1996), "The pozzolanic activity of different materials, its influence on the hydration heat in mortars", Cement Concrete Res., 26, 203-213. https://doi.org/10.1016/0008-8846(95)00200-6
  38. Sanchez De Rojas, M.I., Rivera, J. and Frias, M. (1999), "Influence of the microsilica state on pozzolanic reaction rate", Cement Concrete Res., 29, 945-949. https://doi.org/10.1016/S0008-8846(99)00085-X
  39. TC 203-RHM (2009), "Rilem TC 203-RHM: Repair mortars for historic masonry. Testing of hardened mortars, a process of questioning and interpreting" , Mater. Struct., 42, 853-865. https://doi.org/10.1617/s11527-008-9455-x
  40. Schueremans, L., Cizero, O., Janssens, E., Serre, G. and Van Balen, K. (2011), "Characterization of repair mortars for the assessment of their compatibility in restoration projects: Research and practice", Constr. Build. Mater., 25, 4338-4350. https://doi.org/10.1016/j.conbuildmat.2011.01.008
  41. Ubbríaco, P. and Tasselli, F. (1998), "A study of the hydration of lime-pozzolan binders", J. Therm. Anal., 52, 1047-1054. https://doi.org/10.1023/A:1010101126587
  42. Van Balen, K., Papayanni, I., Van Hees, R., Binda, L. and Waldum, A. (2005), "Introduction to requirements for and functions and properties of repair mortars", Mater. Struct., 38, 781-785.
  43. Varas, M.J., Alvarez De Buergo, M., Perez-Monserrat, E. and Fort, R. (2008), "Decay of the restoration render mortar of the church of san manuel and san benito, Madrid, Spain: Results from optical and electron microscopy", Mater. Charact., 59, 1531-1540. https://doi.org/10.1016/j.matchar.2007.11.008
  44. Villasenor, I. and Price, C.A. (2008), "Technology and decay of magnesian lime plasters: the sculptures of the funerary crypt of Palenque, Mexico", J. Archaeol. Sci., 35, 1030-1039. https://doi.org/10.1016/j.jas.2007.07.006
  45. Yilmaz, B. and Ediz, N. (2008), "The use of raw and calcined diatomite in cement production", Cement Concrete Comp., 30, 202-211. https://doi.org/10.1016/j.cemconcomp.2007.08.003

Cited by

  1. Characterisation of ancient mortars from the S. Niccolò archaeological complex in Montieri (Tuscany – Italy) vol.96, 2015, https://doi.org/10.1016/j.conbuildmat.2015.08.023
  2. Archaeometric study of natural hydraulic mortars: the case of the Late Roman Villa dell’Oratorio (Florence, Italy) vol.9, pp.4, 2017, https://doi.org/10.1007/s12520-016-0404-2
  3. Compositional study of mortars and pigments from the “Mosaico della Sala dei Draghi e dei Delfini” in the archaeological site of Kaulonía (Southern Calabria, Magna Graecia, Italy) vol.9, pp.3, 2017, https://doi.org/10.1007/s12520-015-0285-9
  4. Indirect chronology method employing rare earth elements to identify Sagunto Castle mortar construction periods vol.132, 2017, https://doi.org/10.1016/j.microc.2017.02.009
  5. Archaeometric Study of Mortars from the Garum Shop at Pompeii, Campania, Italy vol.30, pp.4, 2015, https://doi.org/10.1002/gea.21515
  6. New compositional data on ancient mortars from Hagia Sophia (Istanbul, Turkey) vol.9, pp.4, 2017, https://doi.org/10.1007/s12520-016-0375-3
  7. Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars vol.71, pp.4, 2017, https://doi.org/10.1177/0003702817695289
  8. First compositional evidences on the local production of Dressel 2–4 amphorae in Calabria (Southern Italy): characterization and mixing simulations vol.119, pp.4, 2015, https://doi.org/10.1007/s00339-015-9143-y
  9. Spectroscopic, microchemical and petrographic analyses of plasters from ancient buildings in Lamezia Terme (Calabria, Southern Italy) vol.153, 2016, https://doi.org/10.1016/j.saa.2015.08.018
  10. Production of the Roman Cement in Italy: characterization of a raw material used in Tuscany between 19th and 20th century and its comparison with a commercialized French stone material vol.12, pp.6, 2018, https://doi.org/10.1080/15583058.2018.1431730
  11. Chemical characterization of large size archaeological clay bricks for grouping study by internal mono-standard neutron activation analysis vol.316, pp.3, 2018, https://doi.org/10.1007/s10967-018-5863-8