DOI QR코드

DOI QR Code

Effect of Ultrasonic Frequency on the Atomization Characteristics of Single Water Droplet in an Acoustic Levitation Field

음향 부양장(acoustic levitation field)에서 초음파 주파수(ultrasonic frequency)에 따른 단일 액적의 미립화 특성

  • 서현규 (국립공주대학교 기계자동차공학부)
  • Received : 2013.07.10
  • Accepted : 2013.09.12
  • Published : 2013.09.30

Abstract

This paper describes the effect of ultrasonic frequency(f) on the atomization and deformation characteristics of single water droplet in an acoustic levitation field. To achieve this, the ultrasonic levitator that can control sound pressure and velocity amplitude by changing frequency was installed, and visualization of single water droplet was conducted with high resolution ICCD and CCD camera. At the same time, atomization and deformation characteristics of single water droplet was studied in terms of normalized droplet diameter($d/d_0$), droplet diameter(d) variation and droplet volume(V) variation under different ultrasonic frequency(f) conditions. It was revealed that increase of ultrasonic frequency reduces the droplet diameter. Therefore, it is able to levitate with low sound pressure level. It also induces the wide oscillation range, large diameter and volume variation of water droplet. In conclusion, the increase of ultrasonic frequency(f) can enhance the atomization performance of single water droplet.

Keywords

References

  1. T. I. Farouk and F. L. Dryer, "On the extinction characteristics of alcohol droplet combustion under microgravity conditions - A numerical study", Combustion and Flame, Vol. 159, 2012, pp. 3208-3223. https://doi.org/10.1016/j.combustflame.2012.04.005
  2. G. M. Faeth, "Current status of droplet and liquid combustion", Progress in Energy and Combustion Science, Vol. 3, 1977, pp. 191-224.
  3. N. Kaji, Y. H. Mori and Y. Tochitani, "Heat transfer enhancement due to elecrncally induced resonant oscillations of drops", ASME J. Heat Transfer, Vol. 107, 1985, pp. 788-793. https://doi.org/10.1115/1.3247505
  4. T. C. Scott and R. M. Wham, "An electrically driven multistage countercurrent solvent extraction device: the emulsion phase contractor", I. & It. C. Reseamh, Vol. 28, 1989, pp. 94-101.
  5. G. K. Raina, R. K. Wanchoo and P. D. Grover, "Direct contact heat transfer with change of phase: motion of evaporating droplet", AICIIE J. Vol. 11, 1984, pp. 835-837.
  6. J. P. Reid, "Particle levitation and laboratory scattering", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 2009, pp. 1293-1306. https://doi.org/10.1016/j.jqsrt.2009.02.019
  7. A. Omrane, S. Santesson, M. Alden and S. Nilsson, "Laser techniques in acoustically levitated micro droplets", Lab on a Chip, Vol. 4, 2004, pp. 287-291. https://doi.org/10.1039/b402440k
  8. R. T. Hilger, M. S. Westphall and L. M. Smith, "Controlling Charge on Levitating Drops", Analytical Chemistry, Vol. 79, No. 15, 2007, pp. 6027-6030. https://doi.org/10.1021/ac070413j
  9. A. V. A. Kumar and S. K. Bhatia, "Mechanisms influencing levitation and the scaling laws in nanopores: oscillator model theory", J. Phys. Chem. B Vol. 110, 2006, pp. 3109-3113. https://doi.org/10.1021/jp056670e
  10. Y. Tian and R. E. Apfel, "A novel multiple drop levitator for the study of drop arrays", J. Aerosol Sci. Vol. 27, No. 5, 1996, pp. 721-737. https://doi.org/10.1016/0021-8502(96)00018-3
  11. R. E. Apfel, Y. Zheng and Y. Tian, "Studies of acoustoelectrically levitated drop and particle clusters and arrays", J. Acoust. Soc. Am. Vol. 105, No. 5, 1999, 4966(99)50005-2.
  12. M. Tanabe, T. Kuwahara, K. Satoh, T. Fujimori, J. Sato and M. Kono, "Droplet combustion in standing sound waves", Proceedings of the Combustion Institute, Vol. 30, 2005, pp. 1957-1964.
  13. M. Tanabe, T. Morita, K. Aoki, K. Satoh, T. Fujimori and J. Sato, "Influence of standing sound waves on droplet combustion", Proceedings of the Combustion Institute, Volume 28, 2000, pp. 1007-1013.
  14. E, Shafirovich, S. K. Teoh and A. Varma, "Combustion of levitated titanium particles in air", Combustion and Flame, Vol. 152, 2008, pp. 262-271. https://doi.org/10.1016/j.combustflame.2007.05.008
  15. T. Suekane, K. Yasutomi and S. Hirai, "Experimental observations of effects of convection on flame shape and extinction on n-heptane single droplets", Combustion and flame, Vol. 126, 2001, pp. 1599-1601. https://doi.org/10.1016/S0010-2180(01)00255-3
  16. G. Xu, M. Ikegami, S. Honma, K. Ikeda, D. L. Dietrich and P. M. Struk, "Interactive influences of convective flow and initial droplet diameter on isolated droplet burning rate", International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 2029-2035. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.035
  17. G. Xu, M. Ikegami, S. Honma, M. Sasaki, K. Ikeda, H. Nagaishi and Y. Takeshita, "Combustion characteristics of droplets composed of light cycle oil and diesel light oil in a hot-air chamber", Fuel, Vol. 82, 2003, pp. 319-330. https://doi.org/10.1016/S0016-2361(02)00276-4
  18. O. Imamura, Y. Kubo, J. Osaka, J. Sato, M. Tsue and M. Kono, "A study on single fuel droplets combustion in vertical direct current electric fields", Proceedings of the Combustion Institute, Vol. 30, 2005, pp. 1949-1956.
  19. G. Brenn, L. J. Deviprasath, F. Durst and C. Fink, "Evaporation of acoustically levitated multi-component liquid droplets", International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 5073-5086. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.036
  20. A. L. Yarin, G. Brenn and D. Rensink, "Evaporation of acoustically levitated droplets of binary liquid mixtures", International Journal of Heat and Fluid Flow, Vol. 23, 2002, pp. 471-486. https://doi.org/10.1016/S0142-727X(02)00142-X
  21. F. P. Capote and L. Castro, "Ultrasound-assisted levitation: Lab-on-a-drop", Trends in Analytical Chemistry, Vol. 25, No. 9, 2006, pp. 856-861. https://doi.org/10.1016/j.trac.2006.05.014

Cited by

  1. Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet vol.19, pp.4, 2014, https://doi.org/10.15435/JILASSKR.2014.19.4.211