DOI QR코드

DOI QR Code

Improvement of UV Photoluminescence of Hydrogen Plasma Treated ZnO Nanowires

수소 플라즈마 처리된 산화 아연 나노선의 자외선 발광 특성향상

  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College) ;
  • Park, Sunghoon (Department of Materials Science & Engineering, Inha University)
  • 강우승 (인하공업전문대학 금속재료과) ;
  • 박성훈 (인하대학교 신소재공학과)
  • Received : 2013.11.01
  • Accepted : 2013.11.10
  • Published : 2013.11.30

Abstract

ZnO nanowires were synthesized by vapor-liquid-solid (VLS) process using ZnO and graphite powders on the sapphire substrate coated with an Au film as a catalyst. ZnO nanowires had two prominent emission bands; i) near-band edge (NBE) emission band at 380 nm, and ii) a relatively stronger deep level (DL) emission band ($I_{NBE}/I_{DL}$ <1). In order for the ZnO nanowires to be utilized as an effective material for UV emitting devices, the photoluminescence intensity of NBE needs to be improved with the decreased intensity of DL. In the current study, hydrogen plasma treatment was performed to improve the photoluminescence characteristics of ZnO nanowires. With the hydrogen plasma treatment time of more than 120 sec, the extent of performance improvement was gradually decreased. However, the intensity ratio of NBE to DL ($I_{NBE}/I_{DL}$) was significantly improved to about 4 with a relatively short plasma treatment time of 90 sec, suggesting hydrogen plasma treatment is a promising approach to improve the photoluminescence properties of ZnO nanowires.

Au 촉매를 코팅한 사파이어 기판 상에서 산화아연과 흑연 분말을 혼합한 분말재료를 이용하여 VLS (vapor-liquid-solid) 법으로 산화아연 반도체 나노선을 합성하였다. 제조된 산화아연 나노선은 380 nm에서 근 자외선 영역의 NBE (near-band edge) 발광과 600 nm 부근의 가시광선 영역에서 넓게 퍼져 발광하는 상대적으로 강한 DL (deep level) 발광이 확인되었다($I_{NBE}/I_{DL}$ <1). 산화아연 나노선을 효율적인 단일 파장 자외선 발광체에 적용될 수 있도록 NBE 발광을 극대화함과 동시에 DL 발광을 억제시키기 위하여 본 실험에서는 합성된 산화아연 나노선에 수소 플라즈마 처리를 하였다. 플라즈마 처리시간이 길어짐에 따라(120초 이상) 발광특성의 향상정도는 점차로 감소하였지만, 수소 플라즈마 처리를 통해 나노선 내부에 존재하는 불순물 제어 등으로 다소 짧은 시간의 플라즈마 처리로(90초 이내) DL발광대비 NBE발광의 세기가 약 4배로 향상됨을 확인 하였다($I_{NBE}/I_{DL}$ ~4).

Keywords

References

  1. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Z. Perez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. L. S. Dang, Nanotechnol. 20, 332001 (2009). https://doi.org/10.1088/0957-4484/20/33/332001
  2. Y. S. Choi, J. W. Kang, D. K. Hwang, and S. J. Park, IEEE Trans. Electron Devices 57, 26 (2010). https://doi.org/10.1109/TED.2009.2033769
  3. W. I. Park and G. C. Yi, Adv. Mater. 16, 87 (2004). https://doi.org/10.1002/adma.200305729
  4. E. Lai, W. Kim, and P. Yang, Nano Res. 1, 123 (2008). https://doi.org/10.1007/s12274-008-8017-4
  5. M. A. Zimmler, D. Stichtenoth, C. Ronning, W. Yi, V. Narayanamurti, T. Voss, and F. Capasso, Nano Lett. 8, 16955 (2008).
  6. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Appl. Phys. Lett. 93, 051101 (2008). https://doi.org/10.1063/1.2965797
  7. M. T. Chen, M. P. Lu, Y. J. Wu, J. Song, C. Y. Lee, M. Y. Lu, Y. C. Chang, L. J. Chou, Z. L. Wang, and L. J. Chen, Nano Lett. 10, 4387 (2010). https://doi.org/10.1021/nl101907h
  8. M. A. Zimmler, T. Voss, C. Ronning, and F. Capasso, Appl. Phys. Lett. 94, 241120 (2009). https://doi.org/10.1063/1.3157274
  9. C. Xiong, A. E. Aliev, B. Gnade, and K. J. Balkus, ACS Nano 2, 75083 (2008).
  10. Y. J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, and J. H. Lee, Nanotechnol. 19, 095508 (2008). https://doi.org/10.1088/0957-4484/19/9/095508
  11. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, Analyst 133, 126 (2008). https://doi.org/10.1039/b712970j
  12. S. Park, S. An, H. Ko, C. Jin, and C. Lee, ACS Appl. Mater. Interfaces 4, 3650 (2012). https://doi.org/10.1021/am300741r
  13. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 92093 (2007).
  14. M. C. Jeong, B. Y. Oh, M. H. Ham, and J. M. Myoung, Appl. Phys. Lett. 88, 202105 (2006). https://doi.org/10.1063/1.2204655
  15. F. Xu, Z. Y. Yuan, G. H. Du, T. Z. Ren, C. Bouvy, M. Halasa, and B. L. Su, Nanotechnol. 17, 588 (2006). https://doi.org/10.1088/0957-4484/17/2/041
  16. Y. H. Yang, X. Y. Chen, Y. Feng, and G. W. Yang, Nano Lett. 7, 3879 (2007). https://doi.org/10.1021/nl071849h
  17. R. Konenkamp, R. C. Word, and M. Godinez, Nano Lett. 5, 2005 (2008).
  18. J. P. Richters, T. Voss, D. S. Kimg, R. Scholz, and M. Zacharias, Nanotechnol. 19, 305202 (2008). https://doi.org/10.1088/0957-4484/19/30/305202
  19. M. K. Lee, T. G. Kim, W. Kim, Y. M. Sung, and J. Phys. Chem. C 112, 10079 (2008). https://doi.org/10.1021/jp8018809
  20. K. W. Liu, R. Chen, G. Z. Xing, T. Wu, and H. D. Sun, Appl. Phys. Lett. 96, 023111 (2010). https://doi.org/10.1063/1.3291106
  21. C. Jin, C. Hong, S. Park, and C. Lee, Thin Solid Films 519, 1351 (2010). https://doi.org/10.1016/j.tsf.2010.09.055
  22. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem. Int. Edit. 42, 3031 (2003). https://doi.org/10.1002/anie.200351461
  23. C. Baratto, E. Comini, M. Ferroni, G. Faglia, and G. Sberveglieri, Cryst. Eng. Comm. 15, 7981 (2013). https://doi.org/10.1039/c3ce41055b