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Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults 
in Induction Motors 
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Abstract – This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults 
in induction motors. The proposed algorithm is composed of a frequency signal dimension order 
(FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related 
frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from 
the FSDO estimator is used depending on the load conditions of the induction motors. Experimental 
results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed 
diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom 
multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational 
invariance techniques (ZESPRIT). 
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1. Introduction 
 

Induction motors are widely used in electrical machines 
in the electrical and processing industries. There are 
various induction motor failures from stator, rotor, bearing, 
or other faults [1, 2]. Induction motor failure results in 
severe damage to the motor itself, as well as to the motor-
related processes in the industrial plant. 

Many studies based on the frequency domain analysis 
using the fast Fourier transform (FFT) have been 
performed in order to detect broken rotor bars (BRBs), 
stator windings, and mechanical faults [3-6]. Using a 
motor current signature analysis (MCSA), which is based 
on the FFT method, the spectrum of stator currents can be 
used to diagnose BRBs faults and stator winding faults 
with various faulty motor conditions [3]. The MCSA 
based on the FFT analysis of the sideband components 
provides the information to diagnose accurately and 
quantitatively the broken rotor bars in induction machines 
[4]. A FFT-based MCSA with advanced signal-and-data-
processing algorithms is proposed for an online induction 
motor diagnosis system [5]. A detection method is 
proposed for stator winding faults in the low-frequency-
range of the flux spectrum with low resolution that 
exploits an external stray flux sensor [6]. However, the 
frequency resolution of FFT-based methods is limited to 
the number of data points.  

Based on the FFT, zoom-FFT (ZFFT) techniques with 
window functions have been proposed to increase the 
frequency resolution [7-9]. ZFFT techniques reduce the 
computational time, save the memory size, and increase the 

accuracy in a specified frequency range [7-9]. However, 
the ZFFT techniques for the high-frequency resolution 
requires a long acquisition time [8, 9]. 

In the literature, time-frequency domain analyses based 
on wavelet-transform techniques have been investigated to 
overcome the resolution problem encountered in fault 
diagnostic analysis [10-12]. Wavelet-transform techniques, 
which are effective for stationary as well as nonstationary 
signal processing, provide a multiresolution signal analysis 
with high resolution in the time and frequency domains 
[10-12]. An automatic online diagnosis algorithm for 
broken-rotor-bar detection has been proposed based on the 
wavelet-transform application to the start-up current 
transient [10]. By using the wavelet decomposition, fault 
diagnosis has been performed in both time and frequency 
domains [11]. Based on a continuous wavelet technique 
with frequency B-spline functions, a diagnosis method 
identifies as many BRB fault-related frequency components 
as possible during large transients [12]. Wavelet-transform 
techniques can be applied to detect faults during stationary 
and non-stationary conditions [10-12]. However, in 
stationary conditions, wavelet-transform techniques have 
the disadvantage in the frequency resolution compared to 
the subspace methods. 

Subspace methods such as a multiple signal 
classification (MUSIC) algorithm and an estimation of 
signal parameters via rotational invariance techniques 
(ESPRIT) have been applied to diagnose induction motor 
faults while overcoming the frequency resolution limitation 
of the FFT method in low signal-to-noise ratios (SNRs) 
[13-17]. The MUSIC and ESPRIT compute an auto-
correlation matrix of the signals, estimate a frequency 
signal dimension order (FSDO), use signal and noise 
subspaces, and convert the fault detection problem into a 
generalized eigenvalue problem [13-17]. The MUSIC was 
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applied to estimate the harmonic components in order to 
improve induction motor fault detection [13]. The MUSIC 
and short-time MUSIC were used for the analysis of the 
space-vector of voltages induced in stator windings, after 
supply disconnection, to detect BRBs faults in induction 
machines [14]. The MUSIC algorithm with zooming 
methods was proposed to detect fault sensitive 
frequencies based on a frequency analysis of the stator 
current [15]. Using the motor leakage flux spectral 
analysis, the MUSIC is applied to identify BRB faults in 
induction motors [16]. The ESPRIT with the zooming 
technique has been proposed to estimate both the 
frequencies and amplitudes of BRB fault harmonics using 
the stator current analysis [17]. However, the difference 
in the spectrum of healthy motors and those with BRB 
faults determined using the zoom MUSIC (ZMUSIC) [15] 
or zoom ESPRIT (ZESPRIT) [17] is not obvious when 
the load level is close to no-load condition. To overcome 
this limitation, this paper proposes another fault 
diagnostic index using the result of the FSDO estimator, 
which is needed to perform the ZMUSIC [15] or 
ZESPRIT [17]. 

In experiments, the small slip induces small current 
flowing in the rotor even though under no-load condition 
[22, 23]. To detect BRBs faults under no-load condition, 
the wavelet transform is proposed using transient current 
analysis to overcome the resolution problem of FFT-based 
methods [22]. A detection method based on particle swarm 
optimization can estimate BRBs fault-related frequencies 
using stator current under no-load condition [23]. However, 
performance analysis using detection and false alarm 
probabilities is required in order to provide a stable 
diagnosis for BRBs faults [22, 23]. 

In this paper, a robust fault diagnosis algorithm is 
proposed to detect BRB faults in induction motors. In this 
approach, a FSDO estimator, and a fault decision module 
are proposed. For the FSDO estimator, we use the 
minimum description length (MDL) criterion [18] to 
improve the performance of BRB fault detection for 
motors operating with no load or a finite load. On the basis 
of the FSDO estimator, we propose a fault decision module 
that uses the FSDO estimate as a fault diagnosis index. In 
this module, the predetermined threshold values depending 
on the load conditions are optimized using the detection 
and false alarm probabilities from the experimental results. 
Experimental results show that the proposed diagnosis 
algorithm achieves the optimal performance for BRBs 
faults in various load conditions. 

 
 

2. Detection of Broken Rotor Bar 
 
In this section, frequencies in the current spectrum are 

analyzed in order to diagnose BRB faults. Then, a data 
model for BRB faults is presented using the stator current. 

 

2.1 Frequency analysis of broken rotor bar 
 
When an induction motor rotor bar is broken, the stator 

steady-state current has harmonic frequencies given by 
[15, 17] 
 
 = (1 2 ) ,BRB sf ks f±  (1) 

 
where s  is the per-unit motor slip, sf  is the electrical 
supply frequency, and k=1,2,3,… is the harmonic 
frequency index. In (1), the frequency of interest for BRB 
fault detection, BRBf , exists near the electrical supply 
frequency sf . Therefore, BRB faults are verified with the 
presence of frequency components of interest, BRBf , near 
the electrical supply frequency, sf , in the current spectrum. 

The characteristic frequency for BRB fault detection, 
BRBf , is a function of the slip s , where the slip s  

depends on the load condition [15, 17]. When the relative 
mechanical speed of the motor is almost the same as the 
motor synchronous speed, which occurs when the motor 
operates with no load, the slip s  is very small and it is 
very hard to identify frequencies arising from BRB faults 
in (1) using the FFT method or the MUSIC algorithm [15, 
17]. 

 
2.2 Data model 

 
Discrete time-domain measurement data for the stator 

current can be represented as follows:  
 

 
=1

[ ] = [ ] [ ] = cos(2 ) [ ],
K

i i i
i

x n s n e n a f n e nπ φ+ + +∑   (2) 

 
where [ ]s n  consists of sinusoids, [ ]e n  represents white 
noise with a zero mean and a variance of 2σ , K  is the 
number of pure sinusoids, and ia , if , and iφ  are the 
amplitude, the frequency, and the phase of the i th pure  
sinusoid, respectively. Using cos(2 )i if nπ φ+ =  

( ) ( )( )2 21
2

i i i ij f n j f ne eπ φ π φ+ − ++ from Euler’s formula [19], (2) 

can also be expressed in complex exponential form as 
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K if + = if−  for 1 i K≤ ≤ , and = 2M K . Using >L M   
serial discrete-time samples  
{ }[ ], [ 1], , [ 1]x n  x n   x n L+ + −L , we can rewrite (3) in a 
compact matrix format as follows: 
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 ( ) = ( ),n n+x FA e   (4) 
 

where ( ) [ ] [ ] [ ]= 1 1
T

n x n  x n   x n L⎡ ⎤+ + −⎣ ⎦Lx , 
=F 1 2[ ( ) ( ) ( )]Mf  f   fLf f f  with 

( ) 2 ( 1)2 12( ) = [ ]ii j f n Lj f nj f n Ti
if e  e e πππ + −+

Lf ,  
= 1, 2, ,i    ML , 1 2= [ ]T

MA  A   ALA , and 
( ) [ ] [ ] [ ]= 1 1

T
n e n  e n   e n L⎡ ⎤+ + −⎣ ⎦Le .  

Here, F  is a L M×  Vandermonde matrix of rank M  
and ( )iff  is the mode vector with frequency if , where 

= 1, 2, ,i  ML . 
 
 

3. BRB Fault Diagnosis Algorithm 
 
In this section, a robust diagnosis scheme is proposed to 

detect BRB faults. The proposed diagnosis algorithm 
consists of a FSDO estimator, and a fault decision module. 
The FSDO estimator provides the number of frequency 
components in the measured data using the MDL criterion. 
A fault decision module uses the number of frequency 
components as the fault index to detect BRB faults. 

 
3.1 FSDO estimator 

 
The autocorrelation matrix xR  of the measurement data 

( )nx  can be expressed as 
 

 2= ( ) ( ) = ,H H
x LAE n n σ⎡ ⎤ +⎣ ⎦R x x FR F I   (5) 

 
where [ ]E ⋅  denotes the expected value, = H

A E ⎡ ⎤⎣ ⎦R AA  
denotes the signal correlation matrix, and LI  denotes an 
L L×  identity matrix. 

To implement the FSDO estimator, we need an estimate, 
ˆ

xR , of xR  in (5). By using >N L  serial measured time 
samples { }[ ], [ 1], , [ 1]x n  x n   x n N+ + −L , a spatial 
smoothing (SS) method is applied to calculate ˆ

xR  as 
follows [20]: 

 

 
=1

1ˆ = ( ) ( ),
Ps

T
x

ns

n n
P ∑R x x   (6) 

 
where = 1sP N L− + . In (6), the eigenvalues of ˆ

xR  is 
defined as { }1 2 Lλ λ λ≥ ≥ ≥L  and can be obtained using 
the eigenvalue decomposition. When ˆ

xR  has the full rank 
of M , we obtain  
 
 2

1 2 1 2> = = = = .M M M Lλ λ λ λ λ λ σ+ +≥ ≥ ≥L L  (7) 
 
Information theoretic criteria, such as the MDL or 

Akaike information criterion (AIC), have been used to 
obtain the number of frequencies [18]. The MDL criterion 
for the estimation of M  is used in this paper, and is given 
as follows [17, 18]: 
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The estimate of M  can then be expressed as  
 

 ˆ = min ( ),arg kM MDL k  (9) 
 

where = 0,1, , 1k L −L . 
This estimate of M  can be used to make a decision for 

the BRB fault detection. For example, when the no-load 
condition is satisfied, the slip s  is 0.00022 and therefore 
the frequency estimation for harmonic frequencies in (1) 
cannot be performed precisely. However, when a faulty 
induction motor with a BRB fault operates in low load 
conditions, harmonic frequencies are introduced into the 
stator current due to the air-gap flux. Therefore, even 
though the difference between BRBf  and sf  is smaller 
than the frequency resolution of the frequency estimation, 
harmonic frequencies are present in the stator current in (1) 
for BRB faulty motors. In the proposed method, M̂  is 
defined as a fault diagnostic index to detect BRB faults. 
The procedure for BRB fault detection is described in the 
following subsection. 

 
3.2 Fault decision module 

 
A functional block diagram of the proposed diagnosis 

scheme for BRB faults in induction motors is shown in 
Fig. 1. First, the measured data vector ( )nx  in (4) is 
used to calculate the autocorrelation matrix ˆ

xR  in (6). 
The eigenvalues of the correlation matrix are then 
computed. Through the analysis of the eigenvalues by the 
MDL criterion, the FSDO estimator calculates and supplies 
the estimate of the number of frequencies M̂  in (9) to the 
fault decision module. 

In the fault decision module, we use the property that 
M̂  for BRB faulty motors is larger than that in healthy 
motors, because the BRB fault introduces harmonic 
frequencies in (1) in different load conditions. The fault 
decision module uses the motor speed SR  and M̂  from 
the FSDO estimator. During the initial stage, the motor 
speed SR  can be estimated using the rotor-slot harmonics 
[5]. Let thM  be the threshold parameter predetermined 
from experimental results depending on the motor speed. 
At different load conditions, M̂  in (9) is used for the BRB 
fault decision and is compared to thM . This is because M̂  
increases even when the frequency estimation cannot be 

( )nx ˆ
xR 1 2,  , ,  Lλ λ λL M̂

Fig. 1. Block diagram of the BRB fault diagnosis algorithm
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performed exactly due to the low load condition [15, 17]. 
The proposed diagnosis algorithm detects BRB faulty 
motors with the optimal performance even at no load 
condition using thM . 

 
 

4. Experimental Results 
 
In this section, we present our experimental setup and 

analyze the proposed BRB fault diagnosis algorithm with 
different motors and load conditions. For the fault decision 
module of the proposed method, the cumulative 
distribution functions (CDFs) for detection and false alarm 
probabilities obtained from experimental results. The 
performance of the proposed BRB fault diagnosis 
algorithm is compared with those of the ZMUSIC and 
ZESPRIT algorithms for different motors and under 
different load conditions. 

 
4.1 Experimental setup 

 
The experiment tests were performed with 75-kW 

squirrel-cage induction motors. Fig. 2 shows the induction 
motor test system, which is composed of a test motor, a 
load motor, an inverter, and a data acquisition system 
(DAS). The specifications of the test and load motors are 
described in Table 1. The inverter is connected to the load 
motor to control the load condition of the test motor. Three 
load conditions were considered: no-load, 50%, and 80% 
of the full load. Under the no-load, 50% load, and 80% 
load conditions, the slips are almost 0.00022, 0.0054, and 
0.0091, respectively, and the speeds of the motor are 
1799.6 rpm, 1791.3 rpm, and 1783.2 rpm, respectively. For 

motor conditions, three types of motors were used: a 
healthy motor, a motor with one BRB, and a motor with 
two BRBs. As shown in Fig. 3, BRBs faults were simulated 
by cutting the end of the rotor bar. 

The experimental data was gathered with a sampling rate 
df  of 2 kHz. This can be achieved by downsampling 200 

kHz sampled data from the DAS by an integer factor 100. 
This is because the BRB fault can be detected by the 
analysis of the frequency band near the electrical supply 
frequency sf  [15, 17]. For the FSDO estimator, the size of 
the correlation matrix, = 2048L , and the size of the 
measured time samples for the SS method, = 4096N , are 
used. The measurement data acquisition time is 2.048  
seconds and the measurement data size is = 4096N . In 
order to verify the proposed diagnosis algorithm, the 
results are analyzed for all possible experimental cases. 

 
4.2 Proposed BRB diagnosis algorithm 

 
In the fault decision module, the fault diagnostic index 

M̂  is exploited in order to detect BRB faults. Fig. 4 shows 
CDFs of the FSDO estimate M̂  for healthy and faulty 
motors at the different load conditions. For the no-load 
condition, as shown in Fig. 4(a), there is a significant 
difference between the CDF of a healthy motor and the 
CDFs of faulty ones. Using the threshold value with 

= 163thM  obtained from the CDF-based experimental 
results shown in Fig. 4(a), we can easily detect BRB faults 
in motors operating under the no-load with the false alarm 
probability for M̂ , i.e., ˆ,

= 0
FA M

P , and the detection 
probability for M̂ , i.e., ˆ,

= 1
D M

P , which are defined as 

 
Fig. 2. Experimental setup 

 
Table 1. Characteristics of the induction motor used in 

experiments 

 Test motor Load motor 
Power 75 kW 75 kW 
Voltage 3300 V 380 V 
Current 16.8 A 139.4 A 

Supply frequency 60 Hz 60 Hz 
Number of poles 4 4 

Speed 1778 rpm 1780 rpm 

 
(a) 

  
(b) 

Fig. 3. BRB faults: (a) one BRB and (b) two BRBs 
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follows [21]: 
 

 { }ˆ 0,
ˆ= > ;thFA M

P Pr M M H   (10) 

 
and  

 { }ˆ 1,
ˆ= > ;thD M

P Pr M M H   (11) 
 

where 0H  is the healthy motor hypothesis, and 1H  is the 
BRB faulty motor hypothesis. As shown in Figs. 4(b) and 
4(c), the threshold values are determined to be = 128thM  
for 50% load condition and to be = 124thM  for 80% load 
condition, respectively, using experimental results based on 
the CDFs of healthy and faulty motors. Using the threshold 
values, BRB faults under 50% and 80% load conditions 
can be easily detected using M̂  with ˆ,

= 0
FA M

P  and 
ˆ,

= 1
D M

P . Therefore, for the fault decision module, the fault 
index M̂  can be used for the no-load and finite load 
conditions. 

Fig. 5 shows the threshold values as a function of load 
rates, D, using experimental results. As predicted by the 
experimental results as shown in Fig. 4, the threshold value 

thM  decreases as the load rate D increases. This is because 
when the load rate D increases, the motor slip s increases 
and the BRBs fault-related frequencies BRBf  in (1) are 
getting away from the electrical supply frequency, 
therefore the number of BRBs fault-related frequencies 
from the autocorrelation matrix of measured data in (5) 
decreases. Moreover, lines with two different slopes can be 
calculated with a small set of samples. The absolute value 
of slope between no-load and 50 % load conditions is 
larger than that between 50 % and 80 % load conditions. 

 For comparison purposes, the ZMUSIC [15] and 
ZESPRIT [17] have been analyzed at no-load condition. 
For the ZMUSIC, the frequency shift was -60 Hz, the 
acquisition time was 3 s, and the 100 Hz sampling 
frequency data, which can be obtained by downsampling 
200 kHz sampled data from the DAS by an integer factor 
2000. For the ZESPRIT, the acquisition time was 3 s, and 
the 200 Hz sampling frequency data, which can be 
obtained by downsampling 200 kHz sampled data from the 
DAS by an integer factor 1000. The fault index L

MA  is 
defined as the amplitude of lower side band harmonic 
(LSH) in bandwidth BW1 of the pseudospectrum for the 
ZMUSIC, where the fault index is computed with respect 
to the noise level [15]. The fault index S

BA  for the 
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Fig. 4. CDFs of M̂  for the (a) no-load, (b) 50% load, and
(c) 80% load conditions. Threshold values are 

163thM = , 128thM = , and 124thM =  for no-load, 
50% load, and 80% load conditions, respectively. 
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Fig. 5. Threshold values as a function of load rate D. 



Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors 

 42 

ZEPSRIT is defined as the sum of amplitudes of LSH in 
bandwidth 1BW  and upper sideband harmonic (USH) in 
bandwidth BW2 [17]. 

Fig. 6 shows the CDFs of fault indices L
MA  and S

BA  for 
ZMUSIC [15] and ZESPRIT [17], respectively, for no-load 
condition where the slip s  is 0.00022 and the motor speed 
is 1799.6 rpm. For fault indices, the bandwidth 1BW  is 
between 57 and 60 Hz, and the bandwidth 2BW  is 
between 60 and 63 Hz. For the ZMUSIC as shown in Fig. 
6(a), the CDF of L

MA  for the healthy motor is between 
those for the faulty motor with one BRB and two BRBs.  

For the ZESPRIT as shown in Fig. 6(b), the CDF of S
BA  

for the healthy motor is close to those for faulty motors 
with one BRB and two BRBs. Compared to Fig. 4(a), the 
ZMUSIC and ZESPRIT cannot detect the BRB fault 
frequencies at the no-load condition due to the fault-related 
frequency BRBf  is almost the same with the electrical 
supply frequency sf . 

Furthermore, under the 50% and 80% load conditions as 
shown in Figs. 4(b) and 4(c), the proposed BRB fault 
diagnosis algorithm has better performance for the 

detection probability ˆ,D M
P  and false alarm probability 

ˆ,FA M
P  compared to those of ZMUSIC and ZESPRIT [17]. 
Therefore, compared to the ZMUSIC and ZESPRIT [17], 
the proposed BRB fault diagnosis algorithm accurately 
detects BRB faulty motors under no load and finite load 
conditions. 

 
 

5. Conclusion 
 
In this paper, an accurate and efficient diagnosis 

algorithm is proposed for BRB fault detection in three-
phase squirrel-cage induction motors under no-load and 
finite load conditions. Fault diagnostic index from the 
FSDO estimator is proposed considering the stator current 
signature based on all fault sensitive frequencies. 
Experimental results show that the proposed diagnosis 
algorithm provides the optimal performance under no-load 
and finite load conditions of induction motor. 

The main advantages of the proposed diagnosis 
algorithm are that it can correctly identify BRB faults using 
a few samples and can be easily implemented using 
software. The main drawback, which is also found in other 
high-resolution spectral analysis methods such as the 
MUSIC, ZMUSIC and ZESPRIT, is that the FSDO 
estimator is limited to the steady-state operating condition 
of the induction motor. 
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