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Abstract – This paper presents a simple, consistent and reliable technique to identify detected partial 

discharges (PD) using an acoustic ultrasonic method. A new reliable algorithm named ‘Simple Partial 

Discharge Identifier’ (SPDI) is proposed to perform identification process of the detected ultrasonic 

signals of PD. Experimental works based on recommended practices were setup and the ultrasonic 

signals of the PD were recorded. The PD data is then employed as the reference data. The SPDI 

developed has been tested against commonly used models in Neural Network (NN). Results from the 

SPDI algorithm shows more reliable results compared to NN models results. Comparison made on the 

mean square error (MSE) results shows SPDI produces the desired outcome with lower MSE in 

97.17% of trials. Low error of SPDI indicates a high reliability to be applied in the identification of 

PD. 
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1. Introduction 
 

The insulation material of electrical power equipment 

will gradually deteriorate after a long period of time, 

causing partial discharge (PD) phenomena to occur which 

will eventually lead to complete insulation breakdown [1-

2]. For this reason, detecting partial discharge is useful for 

the insulation assessment and to predict the life of the 

insulation [1-2, 3-16].  

In general, there are two methods in detecting PD which 

are non-electrical (non-contact) method or electrical 

method [1-4, 8]. The electrical method usually uses 

impedance to measure the voltage impulse, and coupling 

capacitor to measure the current impulse and apparent 

charge. The non-contact method usually uses chemical 

transformation, gas pressure, heat, light and acoustic 

emission. However, only the last two are considered as 

practically important [15]. In order to provide the accurate 

solution, it is vital to identify the PD type first. By 

identifying and determining the PD characteristic, further 

analysis can be performed and solutions can be proposed. 

Various methods have been proposed for the identification 

of PD types. However, if the PD is not visible to the human 

vision, recognition of the PD type will be difficult to 

perform. It would be of much easier to make identification 

if the signal can be made to be visible to the eyes. 

There are many tools or methods commonly used to 

identify PD types such as Neural Network (NN), Machine 

Learning (ML) and Support Vector Machine (SVM) [4, 6-7 

and 9-11]. Even though the most preferred tools are NN, 

there are issues that diminish the advantages of NN. NN 

can be considered as a black-box model and the users 

practically do not know the content of the black-box [5]. 

The black-box behaviour of NN and the reliability 

problem of learning interference are the common 

difficulties in using NN [4, 6-7 and 9-11]. An overview of 

NN disadvantages will be described in details, later in the 

methodology section. The SPDI algorithm was developed 

in response to the pre-determined inadequacies of NN in 

producing highly reliable results with respect to the 

identification of PDs. The advantages of the SPDI 

algorithm are its reliability and its ability to deliver 

accurate results despite being a non-complex, transparent 

algorithm which does not rely on commercial software 

tools or models. Also, it does not pose serious issues of 

consistencies found in other method. Experimental works 

have been conducted in accordance to existing standards 

[17-20] and the obtained data has been validated to 

ascertain reliability of the experimental work.  

 

 

2. Experimental Works and Data Verification 

 

In the experimental work, a device called acoustic 

ultrasonic detector is used to record and store the acoustic 

PD signals. The ultrasonic detector has the frequency range 

from 20 kHz to 100 kHz and the central frequency of 40 

kHz is applied in this work, similar to that used by others 

[1-2, 6-8]. The diagram of the non-contact method applied 

in this work is shown in Fig. 1(a). The setup of the 

experimental work for capturing PD ultrasonic signals is 
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shown in Fig. 1(b). The ultrasonic probe is placed 60cm to 

100cm in front of the test object in order to obtain clear 

response of acoustic signal. The PD source is generated by 

various electrodes arrangement that will be the described in 

section 2.1. A test circuit consisting of transformer is 

connected to the PD source via coaxial cable. 

From the observation, the maximum distance that the 

acoustic signals can be clearly measured is at 60cm. The 

corresponding angle measurement are located at 0°, 45°, 

90°, 135° and 180°. However, the angle position does not 

have any significant effect on the acoustic signal. Also, it 

has been verified that the cable does not produce 

significant noise to the recorded ultrasonic signal. The 

following procedures of the experimental works are 

mostly referred to standards [17-20] and publication [1-2, 

6-8, 15-16]. 

Step 1: The acoustic signal of the PD source is measured 

using the ultrasonic device placed 60cm from the 

PD source. The measured data will be converted 

into signal waveform. 

Step 2:  By using wavelet de-noising method, noise 

occurrence on the signal is eliminated from the PD 

signal waveform. 

Step 3:  The converted PD waveform graph is plotted with 

the power source waveform. The phase location of 

the acoustic PD signals will be aligned with those 

of the power source waveform. 

Step 4: From the plotted waveform, the discharge angles 

are determined. Then, the types of the discharge 

are classified. 

2.1 Operation setup and process 

 

The setups of apparatus for producing different types of 

PD are shown in Fig.2 through Fig. 4. The apparatus is 

supplied via a transformer and cable. On the occurrence of 

the PD the acoustic detector detect the sound produced by 

the PD and store it into a sound format file. The sound file 

format then is converted into waveform using MATLAB 

software. 

 

2.1.1 Corona Discharge  
 
The corona discharge was produced by using a brass 

needle and brass plate as shown in Fig. 2 (a). The high 

voltage brass needle points towards a grounded brass plate. 

The gap was tested at 3mm, then at 4.5mm, 6mm, 7.5mm 

9mm and 10mm. The applied voltages were varied from 

3kV to 11.5kV at increments of 0.5kV. Voltages of more 

than 11.5kV will cause arc bridging across top and bottom 

electrodes, leading to complete breakdown. As the gap 

increases, the voltage injected needed to be increased. This 

is because the larger air gap increases the insulation 

between the electrodes, hence a higher voltage is required 

to ionize the air and transfer its charges to the other 

electrode. 

The corona discharges occur at the gap of 7.5mm and 

voltages in the region of 9.5kV to 11.5kV. The corona 

discharges as can be seen in Fig 2 (b). 

 

2.1.2 Void Discharge  
 
For internal discharges, electrodes of the same size as 

shown in Fig. 3 (a) are used. Perspex with air void created 

during moulding was used in the experiment to produce 

internal discharges. The perspex size is customized to be 

slightly larger than the electrodes. The dimension of the 

perspex is shown in Fig. 3 (a) with air void of size 

approximately 1 to 2 mm. 

An air-tight vessel that is able to withstand high voltage 

was used as shown in Fig 3 (a). The vessel is set at a 

pressure of -0.8bar. Partial discharges occur as shown in 

Fig. 3(b) when the voltage is in the range of 12.5kV to 

13kV. At this point, the discharges occurring could be 

purely internal or coupled with surface discharge. It has 

been reported that an air tight condition is necessary in 

 
(a) 

 
(b) 

Fig. 1. (a) Overview of the non-contact method applied in 

this study;. (b) The location arrangement of the 

ultrasonic acoustic device. 

  

(a)            (b) 

Fig. 2. (a) The apparatus setup for the corona discharge. (b) 

The occurrence of the corona discharge. 
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order to prevent occurrence of surface discharge [9]. An 

experiment has been conducted to test if the air-tight 

condition i.e. not at room pressure, can affect the 

breakdown voltage. 

As mentioned earlier, results reported in well cited 

publications will be used as references in the validation 

process of the determination of the type of discharges that 

occur. Complete breakdown will follow if the voltage 

injected higher than 13kV. 

 

2.1.3 Surface Discharge  
 
For surface discharges, the top electrode is relatively 

smaller than the bottom electrode. Perspex is used as the 

insulation material and is placed in between the two brass 

electrode as shown in Fig. 4(a). The top electrode is 

injected with high voltage and the bottom electrode is 

connected to ground.  

The perspex is placed on top of the bottom electrode and 

the top electrode will be firmly placed on top of the 

perspex. The aim is to force the discharge to be arcing on 

the surface of the perspex. Voltage is applied to the top 

electrode; starting at 1kV with 1kV increment. Between 

9kV to 10kV, the ultrasonic sound of the surface discharge 

can be detected. The surface discharge is shown in Fig. 4 

(b). Complete breakdown will occur when the voltage is 

over 10kV. 

 

2.2 Data validation and verification 

 

In order to validate the obtained acoustic PD data, 

comparison with standards and other existing techniques as 

published in [1, 2, 6-8 and 17-20] has been conducted. 

Using the power source signal as the reference, the acoustic 

PD data generated from the corona discharge experiment is 

displayed in a phase-resolved plot. Fig. 5(a) shows the plot 

of the generated acoustic data from the experiment and Fig. 

5(b) shows the standard plot of the phase-resolved corona 

discharge [1, 2, 6-8 and 17-20].  

Comparing the two plots, it can be seen that the signals 

concentrate at 270°. Fig. 5(b) also shows that there are 

discharges at 90°. This only occurs when the discharge 

phenomenon is very intense. In this work, the discharge is 

at typical conditions; hence the discharge signal is not 

visible at 90°. As a result, the plots shown in Fig. 5(a) can 

be verified as a valid corona discharge signal, under typical 

condition. The phase-resolved plots of the obtained surface 

discharge signals are shown in Fig. 6. Fig 6(a) shows the 

signals obtained experimentally and Fig. 6(b) shows the 

signals mentioned in reviews [1, 2, 6, 8 and 17-20]. It can 

be seen that for both plots, the signals concentrate at 90° 

and at 270°. Thus it can be verified that the signals shown 

in Fig. 6(a) as valid surface discharge signal.  

The phase-resolved plots of the obtained internal 

discharge signals are shown in Fig. 7(a) and the phase-

resolved of the surface discharge signal based on [1, 2, 6, 8 

and 17-20] is shown in Fig. 7(b). The internal discharge 

 
(a) 

  

(b) 

Fig. 3. (a) The dimension and type of the specimen used 

including the air void. (b) The apparatus setup for 

the internal discharge. (b) The occurrence of the 

internal discharge. 

 

  

(a)           (b) 

Fig. 4. (a) The apparatus setup for the surface discharges. 

(b) The occurrence of surface discharge. 

 
(a)             (b) 

Fig. 5. The comparison of the phase-resolved partial 

discharge of the corona discharges obtained from 

the experimental work (a) against reference (b). 

 

  
(a)             (b) 

Fig. 6. The comparison of the phase-resolved partial 

discharge of the surface discharges obtained from 

the experimental work (a) against reference (b). 
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signals concentrate at 270° and slightly appear at 90°.  

It may appear that the phase-resolved plot of the internal 

discharges (Fig. 7) is similar to that of surface discharges. 

However, a closer examination reveals that the internal 

discharges plot has a slightly lower magnitude. Also the 

scatter of the internal discharges plot extends to wider 

angles range. 

 

 

3. Methodology for Comparison 

 

MATLAB software is used for processing the data and 

for the development of the NN models. In order to prove 

the reliability problem associated with the NN models, 

the SPDI was developed to improve the reliability 

problems of the NN models. Its effectiveness is 

investigated by comparing its results against the results of 

NN models. For NN, five models were used; the NN 

pattern recognition (NNPR), the Multi-Layer Perceptron 

NN (MLPNN), Radial Basis Function NN (RBFNN), 

Bayesian RBFNN (BRBFNN) and Probabilistic NN (PNN). 

Parameters for all models have been configured to suit the 

experiment in order to obtain the optimised results out of 

NN. The reference sets are used as the training set to train 

the NN. The Mean Square Error (MSE) of all NNPR, 

MLPNN, RBFNN, BRBFNN and PNN will be obtained 

and will be used to compare against the MSE obtained 

from SPDI algorithm. The data used are randomly 

exchanged against other sets in order to analyse the 

consistency of the results produced by SPDI and NN 

models. The response from the NN models on the input is 

taken to calculate the MSE against the reference signals. 

Based on these responses from the NN models, the 

identified input can be recognized. For each iteration 

performed, the NN models produce different responses to 

the reference signals. The consistency of the response is 

imperative in determining the results produced. 

The verified data from the experimental work is used in 

this comparison work. Two data sets will be selected to be 

used as references and the signal to be identified. The 

selected set is used as the references and the acoustic PD 

data input on all SPDI, NNPR, MLPNN, RBFNN, 

BRBFNN and PNN techniques as shown in Fig. 8. 

In order to recognise the difference between the 

references signals against the identified signals, MSE will 

be employed. MSE defines the minimum error state of 

each model. Lower MSE values indicate that the identified 

results of the identification process are more accurate. The 

identification reliability can be evaluated to determine the 

trustworthiness of the employed methods or algorithms. 

 

3.1 Overview of NN 
 

NN has been used in many fields and can be considered 

as the preferred tool. Proponents of the NN are unlikely to 

mention the handicaps of the NN models that render the 

NN as disadvantageous. NN can be considered as a black-

box model of which users practically have no knowledge 

of the content of the black-box [5]. The black-box yields 

uncertain behaviour in terms of reliability and consistency 

of learning interference and this renders its incompetence 

for use [4-6]. Various methods proposed by researchers 

tend to use NN models and improvise the current models to 

more advanced models and produce better outcome. With 

this trend, only the developers fully comprehend their inner 

working but not to others made reference to the publications. 

The training outcome can be non-deterministic and depend 

crucially on the choice of initializing parameters. NN can 

be contemplated as not suitable for problem understanding. 

Other mathematical methods or some nonlinear derivatives 

can be used as a solver because users can see the content of 

the process. In NN environment, users have limitation in 

setting up the NN and in determining the neurons and the 

hidden layers of the network, but still unable to determine 

what happen in the black box of NN. NN use the neuron to 

learn and the learning process makes the neural network 

intelligent enough to understand data patterns to make 

decision. NN training process is by repeatedly presenting 

data to the NN model. The NN will then adjust its 

parameters slightly to represent the new data better. When 

a new set of data in one region of the input is repeatedly 

presented, the NN can forget the learned mapping in other 

regions of the input. This situation is referred to as 

interference problem. The forgetting behaviour can be 

useful if the function modelled is changing over time, 

because the new data will eventually erase the effects of 

  
(a)              (b)  

Fig. 7. The comparison of the phase-resolved partial 

discharge of the internal discharges obtained from 

the experimental work (a) against reference (b).  

Fig. 8. A flowchart showing the methodology to compare 

the performance of the algorithms of SPDI 



Mohammad Shukri Hapeez, Ngah Ramzi Hamzah, Habibah Hashim and Ahmad Farid Abidin 

 263 

the obsolete input. 

 

3.2 Comparison procedure 
 

The workflow of the whole procedure where the SPDI 

algorithm and NN models are used as comparison within 

the process is shown as a flowchart in Fig. 9. The steps 

involved in the flowchart are described in the following: 

 

i) Define the reference – after the experimental work has 

been completed, PD source signals are recorded and stored 

in MATLAB.  

ii) De-noise (Wavelet) – the acoustic PD data is de-

noised by using wavelet based de-noising method. The 

selection of mother wavelet has been tested earlier in order 

to select which type is better and to ensure no PD signals 

are left out. Discrete Wavelet Transform (DWT) shows 

good results have been selected to be used with ‘db3’ for 

the ideal performance in suppressing the PD noise. The 

signal will be decomposed; the filtering process applied 

and the signal reconstructed to minimize the loss of the 

original signal. And by determining the exact thresholding 

parameter to the noisy signals it is expected to provide 

better de-noising effect to the noisy PD signals. 

iii) SPDI algorithm – the acoustic PD data is processed 

with the SPDI algorithm. 

iv) NN models – for comparison purpose, similar 

acoustic PD data used by the SPDI will also be used by the 

NN models. The parameters for the NNPR, MLPNN, 

RBFNN, BRBFNN and PNN have been configured for 

optimum performance in producing the best results. The 

number of neurons and the hidden layer are set at an 

optimal number. 

v) MSE Comparison – after the acoustic PD data has 

been processed by both techniques, the MSE results from 

both techniques will be produced. The MSE can be 

described by the equation in (1). 

 

 
1

1
( )

n

i

X xi
n =

= ∑  (1) 

 

vi) Analysis results from both methods – after obtaining 

the MSE values for both techniques, the comparison will 

be made. The lowest MSE values from either of both 

techniques can be used to identify the type of PD by 

making comparison to the defined reference. The lowest 

MSE from the defined reference set indicates that the input 

signal have low residual and high signal pattern similarity 

for that reference, hence can be used to identify the PD 

type. 

 

3.3 Working principle of SPDI algorithms 

 

It is not an easy task to identify and characterize from 

the recurring pattern of the obtained acoustic signals, and  

Fig. 9. The flowchart of the whole working process. The 

dotted box area is the new proposed SPDI algorithm 
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SPDI was constructed specifically for this purpose. 

Theoretically, SPDI is an algorithm constructed using 

mathematical models, with an emphasis given to simple 

and transparent structure compared to NN. 

The diagram of the flowchart for the SPDI algorithm 

operation is depicted in Fig. 8. The following is the SPDI 

algorithm description: 

 

Step 1: Define variables – the values for the following 

variables will be defined in order to use it for the parameter 

of the algorithm. 

 

i = Number of data 

j = Number of datasets 

s = Interval length shifting 

 

Step 2: Convert acoustic PD data input into absolute 

values – the input values is converted into absolute values 

(positive values) before it is used in the identification 

process. The purpose is that only positive values that will 

be used in SPDI algorithm, hence, the negative values can 

be used to fill the positive data in order to pack the input 

signals on the positive side to ease the curving fitting 

process on the next step. 

Step 3: Create j number of dataset of length i – from the 

input data, create a dataset that contain i number of data in 

that one particular set of data. The i is the variable for 

number of data which has been defined in Step 1. 

Step 4: Define the sth data shifting – after one set of data 

created, another set will be created with the same number 

of length of data set as previous set. The selection of the 

dataset starts after shifting to the defined s in Step 1. The 

second dataset contain data starting from sth position in the 

input, with jth number of length. 

Step 5: Create set of jth dataset – the set of data 

comprises the number of dataset exist in the input. Step 3 

and Step 4 will be repeated until the last data in the input is 

taken into account. 

Step 6: Max Values, Extrapolation – each data set will 

go through max values process and each of the data set and 

the reference set will go through the extrapolation process. 

The Max values is process is when a single dataset will be 

evaluated for its maximum value from the 0 coordinates of 

Y axis. The maximum values accumulated will then be 

extrapolated. The extrapolation can be described as shown 

in (2). Every dataset and references set will be extrapolate. 

 

 
1

1 1

1

( ) ( )n k

n k k k

k k

x x
y x y y y

x x

−

− −

−

−
= + +

−
 (2) 

 

Step 7: Linear Function – after Step 6 completed, the 

dataset will be fitted to a curve. The curve fitting method 

will be used in this process. The linear curve fitting is 

based on the equation depicted in (3). In order to adjust the 

curve created to get much lower MSE, the signal value for 

extrapolation function and linear function can be regulate 

as desired. In this work, a fixed value has been used in 

order to minimize the potential error and to stabilize each 

successive error generated. 

 

 1 1 1 1
( )

n n n n
f x a x a x a x c

− −
= + + + +L  (3) 

 

Step 8: PD Identification – After Step 7 is completed, 

the PD type can be identified from the defined dataset that 

have the lowest MSE values. 

 

 

4. Results 

 

The SPDI technique was developed in providing most 

reliable and consistent results in identifying types of PD 

signals. 

The comparison of the results using SPDI, NNPR, 

MLPNN, RBFNN, BRBFNN and PNN are presented in 

Fig. 10 through 12. The plotted graphs represent the 40 

successive experiments conducted on all PD types. SPDI 

shows almost consistent MSE. The MSE of SPDI can be 

seen as a straight line because the deviations for all 

experiments are low. 

Fig. 10 shows the plotted graph of the MSE results 

obtained from SPDI and the NN models for corona 

discharges. 

The SPDI algorithm shows reliable results as the MSE 

on all 40 consecutive experiments show almost similar 

error. For NNPR and MLPNN techniques, the MSE result 

of both shows an inconsistency compared to SPDI. The 

NNPR pattern of learning shows an understanding of the 

pattern learned and came close to the SPDI on a few 

occasion, at the 4th, 8th, 27th and 40th experiment but 

produce high MSE between the 9th and 26th experiments. 

The MLPNN shows high MSE initially, but perform better 

 

Fig. 10. The plotted results of 40 consecutive experiments 

of the SPDI, NNPR and MLP to identify corona 

discharge signal. The dotted circles show the 

points where MSE of NN models are better than 

SPDI. 
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from 10th experiment onward, the MSE is lower and close 

to SPDI but still SPDI produces much lower MSE. 

Capitalizing on the presented results of the plotted MSE, 

an outcome has been summarized and tabulated in Table 1. 

From Table 1, it can be further derived that the SPDI was 

able to provide lowest MSE in 86.7% in the experiments 

conducted on all PD types. The NNPR model scored 3.3% 

of lowest MSE in the experiment. MLPNN was unable to 

provide any lowest MSE while PNN contributes to only 

0.8% of lowest MSE from the experiments conducted. 

RBFNN and BRBRNN were able to deliver lowest MSE in 

the experiment conducted by only 5.8% and 3.3%, 

respectively. 

Overall, the amount of run-time process of the SPDI 

algorithm is very much less than that of NN models. The 

parameters and the process of the SPDI algorithm are 

transparent and can be amended, as it is not based on 

black-box model concept.  

 

 

5. Conclusion 

 

This study proposes the SPDI method of identifying 

types of PD detected by acoustic emission. The validation 

of the acoustically generated PD data and the classification 

of the PD data into the various types using the proposed 

novel algorithm were presented. The classification of the 

measured PD data obtained using NN models and the SPDI 

algorithm were analyzed and a comparison of each models' 

reliability based on MSE were carried out. From the results 

obtained, conclusions were made over the advantages and 

disadvantages of SPDI and NN models with respect to their 

ability to deliver reliable results. The SPDI algorithm was 

able to produce more reliable, consistent and better results 

in 97.17% of experiments (from all PD types) with lower 

MSE against the NN models. From the presented work, it 

can be further concluded that a simpler method such as 

SPDI can be used to provide better results compared to 

other complex and rigorous methods. 
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