DOI QR코드

DOI QR Code

Diversity of Butyrivibrio Group Bacteria in the Rumen of Goats and Its Response to the Supplementation of Garlic Oil

  • Zhu, Zhi (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Hang, Suqin (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Mao, Shengyong (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Zhu, Weiyun (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2013.06.30
  • Accepted : 2013.09.26
  • Published : 2014.02.01

Abstract

This study aimed to investigate the diversity of the Butyrivibrio group bacteria in goat rumen and its response to garlic oil (GO) supplementation as revealed by molecular analysis of cloned 16S rRNA genes. Six wethers fitted with ruminal fistulas were assigned to two groups for a cross-over design with 28-d experimental period and 14-d interval. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents were used for DNA extraction collected before morning feeding on d 28. A total bacterial clone library was firstly constructed by nearly full-length 16S rRNA gene cloned sequences using universal primers. The resulting plasmids selected by Butyrivibrio-specific primers were used to construct a Butyrivibrio group-specific bacterial clone library. Butyrivibrio group represented 12.98% and 10.95% of total bacteria in control and GO group, respectively. In libraries, clones were classified to the genus Pseudobutyrivibrio, Butyrivibrio and others within the family Lachnospiraceae. Additionally, some specific clones were observed in GO group, being classified to the genus Ruminococcus and others within the family Ruminococcaceae. Based on the criterion that the similarity was 97% or greater with database sequences, there were 29.73% and 18.42% of clones identified as known isolates (i.e. B. proteoclasticus and Ps. ruminis) in control and GO groups, respectively. Further clones identified as B. fibrisolvens (5.41%) and R. flavefaciens (7.89%) were specifically found in control and GO groups, respectively. The majority of clones resembled Ps. ruminis (98% to 99% similarity), except for Lachnospiraceae bacteria (87% to 92% similarity) in the two libraries. The two clone libraries also appeared different in Shannon diversity index (control 2.47 and GO group 2.91). Our results indicated that the Butyrivibrio group bacteria had a complex community with considerable unknown species in the goat rumen.

Keywords

References

  1. Boeckaert, C., B. Vlaeminck, V. Fievez, L. Maignien, J. Dijkstra, and N. Boon. 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 74:6923-6930. https://doi.org/10.1128/AEM.01473-08
  2. Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro, and C. Kamel. 2005. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88:4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  3. Chaves, A. V., K. Stanford, M. E. R. Dugan, L. L. Gibson, T. A. McAllister, F. Van Herk, and C. Benchaar. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 117:215-224. https://doi.org/10.1016/j.livsci.2007.12.013
  4. Cotta, M. and R. Forster. 2006. The family Lachnospiraceae, including the genera Butyrivibrio, Lachnospira and Roseburia. In: The prokaryotes: a handbook on the biology of bacteria (Ed. M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt). Springer, New York. pp. 1002-1021.
  5. Ding, L. and A. Yokota. 2004. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov.. Int. J. Syst. Evol. Microbiol. 54:2223-2230. https://doi.org/10.1099/ijs.0.02975-0
  6. Durmic, Z., C. S. McSweeney, G. W. Kemp, P. Hutton, R. J. Wallace, and P. E. Vercoe. 2008. Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim. Feed Sci. Technol. 145:271-284. https://doi.org/10.1016/j.anifeedsci.2007.05.052
  7. Harfoot, C. G. and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem, 2nd Ed. (Ed. P. N. Hobson and C. S. Stewart). Chapman Hall, London. pp. 382-426.
  8. Hespell, R. B., D. E. Akin, and B. A. Dehority. 1997. Bacteria, fungi, and protozoa of the rumen. In: Gastrointestinal Microbiology, 2nd Ed. (Ed. R. I. Mackie, B. A. White, and R. E. Isaacson). Chapman Hall, New York. pp. 59-141.
  9. Huws, S. A., M. R. F. Lee, S. M. Muetzel, M. B. Scott, R. J. Wallace, and N. D. Scollan. 2010. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol. Ecol. 73:396-407.
  10. Huws, S. A., E. J. Kim, M. R. F. Lee, M. B. Scott, J. K. S. Tweed, E. Pinloche, R. J. Wallace, and N. D. Scollan. 2011. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 13:1500-1512. https://doi.org/10.1111/j.1462-2920.2011.02452.x
  11. Jarvis, G. N. and E. R. B. Moore. 2010. Lipid metabolism and the rumen microbial ecosystem. In: Handbook of Hydrocarbon and Lipid Microbiology (Ed. K. N. Timmis). Springer, Berlin Heidelberg. pp. 2245-2257.
  12. Kemp, P., R. White, and D. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114. https://doi.org/10.1099/00221287-90-1-100
  13. Kepler, C. R., K. P. Hirons, J. J. McNeill, and S. B. Tove. 1966. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 241:1350-1354.
  14. Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel, R. J. Wallace, and N. D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896.
  15. Kopecny, J., M. Zorec, J. Mrazek, Y. Kobayashi, and R. Marinsek-Logar. 2003. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int. J. Syst. Evol. Microbiol. 53:201-209. https://doi.org/10.1099/ijs.0.02345-0
  16. Koppova, I., F. Lukas, and J. Kopecny. 2006. Effect of fatty acids on growth of conjugated-linoleic-acids-producing bacteria in rumen. Folia Microbiol. 51:291-293. https://doi.org/10.1007/BF02931816
  17. Krause, D. O., R. J. Bunch, W. J. M. Smith, and C. S. McSweeney. 1999. Diversity of Ruminococcus strains: a survey of genetic polymorphisms and plant digestibility. J. Appl. Microbiol. 86:487-495. https://doi.org/10.1046/j.1365-2672.1999.00688.x
  18. Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27:663-693. https://doi.org/10.1016/S0168-6445(03)00072-X
  19. Mackie, R. I. and I. K. O. Cann. 2005. A review of gastrointestinal microbiology with special emphasis on molecular microbial ecology approaches. In: Applications of Gene-based Technologies for Improving Animal Production and Health in Developing Countries (Ed. H. P. S. Makkar and G. J. Viljoen). Springer, Netherlands. pp. 175-198.
  20. Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopečný, and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrateproducing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58:2041-2045. https://doi.org/10.1099/ijs.0.65845-0
  21. Muyzer, G. and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-141. https://doi.org/10.1023/A:1000669317571
  22. Paillard, D., N. McKain, M. T. Rincon, K. J. Shingfield, D. I. Givens, and R. J. Wallace. 2007. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J. Appl. Microbiol. 103:1251-1261. https://doi.org/10.1111/j.1365-2672.2007.03349.x
  23. Pei, C. X., S. Y. Mao, Y. F. Cheng, and W. Y. Zhu. 2010. Diversity, abundance and novel 16S rRNA gene sequences of methanogens in rumen liquid, solid and epithelium fractions of Jinnan cattle. Animal 4:20-29. https://doi.org/10.1017/S1751731109990681
  24. Polan, C., J. McNeill, and S. Tove. 1964. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 88:1056-1064.
  25. Reuter, H. D., H. P. Koch, and L. D. Lawson. 1996. Therapeutic effects and applications of garlic and its preparations. In: Garlic: The Science and Therapeutic Application of Allium Sativum L and Related Species (Ed. H. P. Koch and L. D. Lawson). Williams Wilkins, Baltimore. pp. 135-212.
  26. Schloss, P. D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71:1501-1506. https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  27. Stackebrandt, E. and B. M.Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  28. Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165-174. https://doi.org/10.1007/s00253-006-0802-y
  29. Van Gylswyk, N. O., H. Hippe, and F. A. Rainey. 1996. Pseudobutyrivibrio ruminis gen. nov., sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int. J. Syst. Bacteriol. 46:559-563. https://doi.org/10.1099/00207713-46-2-559
  30. Wallace, R. J., L. C. Chaudhary, N. McKain, N. R. McEwan, A. J. Richardson, P. E. Vercoe, N. D. Walker, and D. Paillard. 2006. Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol. Lett. 265:195-201. https://doi.org/10.1111/j.1574-6968.2006.00487.x
  31. Zhu, Z., S. Mao, and W. Zhu. 2012. Effects of ruminal infusion of garlic oil on fermentation dynamics, fatty acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats. Asian-Aust. J. Anim. Sci. 25:962-970. https://doi.org/10.5713/ajas.2011.11442
  32. Zhu, Z., S. Hang, H. Zhu, S. Zhong, S. Mao, and W. Zhu. 2013. Effects of garlic oil on milk fatty acid profile and lipogenesis-related gene expression in mammary gland of dairy goats. J. Sci. Food Agric. 93:560-567. https://doi.org/10.1002/jsfa.5829
  33. Zoetendal, E. G., A. D. L. Akkermans, and W. M. D. Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.

Cited by

  1. Characterization of the microbial communities along the gastrointestinal tract of sheep by 454 pyrosequencing analysis vol.30, pp.1, 2016, https://doi.org/10.5713/ajas.16.0166
  2. Taxonomic Identification of Ruminal Epithelial Bacterial Diversity during Rumen Development in Goats vol.81, pp.10, 2015, https://doi.org/10.1128/AEM.00203-15
  3. Ground Juniperus pinchotii and urea in supplements fed to Rambouillet ewe lambs Part 2: Ewe lamb rumen microbial communities1 vol.95, pp.10, 2017, https://doi.org/10.2527/jas2017.1731
  4. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis vol.6, pp.None, 2014, https://doi.org/10.3389/fmicb.2015.00297
  5. Metagenomic insights into lignocellulose-degrading genes through Illumina-based de novo sequencing of the microbiome in Vietnamese native goats’ rumen vol.64, pp.3, 2014, https://doi.org/10.2323/jgam.2017.08.004
  6. Butyrivibrio fibrisolvens F7 dietary supplementation increases levels of cis 9-trans 11 conjugated linoleic acid in gut and adipose tissue in mice vol.3, pp.None, 2014, https://doi.org/10.1016/j.crbiot.2021.11.001
  7. Impact of Transcriptome and Gut Microbiome on the Response of HIV-1 Infected Individuals to a Dendritic Cell-Based HIV Therapeutic Vaccine vol.9, pp.7, 2021, https://doi.org/10.3390/vaccines9070694
  8. Understanding the Role of Prevotella Genus in the Digestion of Lignocellulose and Other Substrates in Vietnamese Native Goats’ Rumen by Metagenomic Deep Sequencing vol.11, pp.11, 2021, https://doi.org/10.3390/ani11113257
  9. Characterizing the Alteration in Rumen Microbiome and Carbohydrate-Active Enzymes Profile with Forage of Muskoxen Rumen through Comparative Metatranscriptomics vol.10, pp.1, 2014, https://doi.org/10.3390/microorganisms10010071