DOI QR코드

DOI QR Code

Experimental Investigation of Coupling Effects between Particle Size and Temperature on the Thermal Conductivity of Alumina Nanofluids

  • Lee, Ji-Hwan (Korea Aerospace University, BK21PLUS Department of Fundamental Technology for Korean Space Launch Vehicle and Space System) ;
  • Jang, Seok Pil (Korea Aerospace University, School of Aerospace and Mechanical Engineering) ;
  • Lee, Seung-Hyun (Korea Aerospace University, School of Aerospace and Mechanical Engineering) ;
  • Park, Yong-Jun (Korea Aerospace University, School of Aerospace and Mechanical Engineering) ;
  • Kim, Dong Jin (Korea Aerospace University, School of Aerospace and Mechanical Engineering) ;
  • Koo, Jaye (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
  • 투고 : 2014.09.24
  • 심사 : 2014.12.24
  • 발행 : 2014.12.31

초록

This study investigates the effects of nanoparticle size and temperature on the thermal conductivity enhancement of water-based alumina ($Al_2O_3$) nanofluids, using the centrifuging method and relative centrifugal forces of differing magnitude to produce nanofluids of three different particles without involving any dispersants or surfactants. We determined the coupling dependency in thermal conductivity enhancement relative to nanoparticle size and temperature of the alumina nanofluids and also experimentally showed that the effect of temperature on thermal conductivity is strongly dependent on nanoparticle size. Also, our experimental data presented that the effective medium theory models such as the Maxwell model and Hasselman and Johnson model are not sufficient to explain the thermal conductivity of nanofluids since they cannot account for the temperature- and size-dependent nature of water-based alumina nanofluids.

키워드

참고문헌

  1. X. Wang, X., Xu, and S. U. S. Choi, "Thermal Conductivity of Nanoparticle-Fluid Mixture", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, 1999, pp. 474-480. https://doi.org/10.2514/2.6486
  2. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles", Journal of Applied Physics, Vol. 91, No. 7, 2002, pp. 4568-4572. https://doi.org/10.1063/1.1454184
  3. S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids", Journal of Heat Transfer, Vol. 125, No. 4, 2003, pp. 567-574. https://doi.org/10.1115/1.1571080
  4. C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, "Empirical correlation finding the role of temperature and particle size for nanofluid ($Al_2O_3$) thermal conductivity enhancement," Applied Physics Letters, Vol. 87, No. 15, 2005, p. 153107. https://doi.org/10.1063/1.2093936
  5. S. M. S. Murshed, K. C. Leong, and C. Yang, "A Model for Predicting the Effective Thermal Conductivity of Nanoparticle-Fluid Suspensions", International Journal of Nanoscience, Vol. 5, No. 1, 2006, pp. 23-33. https://doi.org/10.1142/S0219581X06004127
  6. X. Zhang, H. Gu, and M. Fujii, "Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids", International Journal of Thermophysics, Vol. 27, No. 2, 2006, pp. 569-580. https://doi.org/10.1007/s10765-006-0054-1
  7. C. H. Li and G. P. Peterson, "The effect of particle size on the effective thermal conductivity of $Al_2O_3$-water nanofluids", Journal of Applied Physics, Vol. 101, No. 4, 2007, p. 044312. https://doi.org/10.1063/1.2436472
  8. E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, "Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory", Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol. 76, No. 6, 2007, p. 061203. https://doi.org/10.1103/PhysRevE.76.061203
  9. H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, "New temperature dependent thermal conductivity data for water-based nanofluids", International Journal of Thermal Sciences, Vol. 48, No. 2, 2009, pp. 363-371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009
  10. M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, "The effect of particle size on the thermal conductivity of alumina nanofluids", Journal of Nanoparticle Research, Vol. 11, No. 5, 2009, pp. 1129-1136. https://doi.org/10.1007/s11051-008-9500-2
  11. J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu, and G. Chen, "Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering," Nano Letters, Vol. 9, No. 12, 2009, pp. 4128-4132. https://doi.org/10.1021/nl902358m
  12. T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu, "The effect of alumina/water nanofluid particle size on thermal conductivity", Applied Thermal Engineering, Vol. 30, No. 14-15, 2010, pp. 2213-2218. https://doi.org/10.1016/j.applthermaleng.2010.05.036
  13. J.-H. Lee, S.-H. Lee, C. J. Choi, S. P. Jang, and S. U. S. Choi, "A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids," International Journal of Micro-Nano Scale Transport, Vol. 1, No. 4, 2010, pp. 269-322. https://doi.org/10.1260/1759-3093.1.4.269
  14. W. Evans, J. Fish, and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Applied Physics Letters, Vol. 88, No. 9, 2006, p. 093116. https://doi.org/10.1063/1.2179118
  15. J. Eapen, W. C. Williams, J. Buongiorno, L.-W. Hu, S. Yip, R. Rusconi, and R. Piazza, "Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction," Physical Review Letters, Vol. 99, No. 9, 2007, p. 095901. https://doi.org/10.1103/PhysRevLett.99.095901
  16. J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of $Al_2O_3$ nanoparticles," International Journal of Heat and Mass Transfer, Vol. 50, No. 11-12, 2008, pp. 2651-2656.
  17. Y. Nagasaka and A. Nagashima, "Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method," Journal of Physics E: Scientific Instruments, Vol. 14, No. 12, 1981, pp. 1435-1440. https://doi.org/10.1088/0022-3735/14/12/020
  18. J. C. Maxwell, "A Treatise on Electricity and Magnetism", 1st Edition, Vol. 1, Clarendon Press, Oxford, U.K., 1873, pp. 360-366.
  19. D. P. H. Hasselman and L. F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance", Journal of Composite Materials, Vol. 21, No. 6, 1987, pp. 508-515. https://doi.org/10.1177/002199838702100602
  20. O. M. Wilson, X. Hu, D. G. Cahill, and P. V. Braun, "Colloidal metal particles as probes of nanoscale thermal transport in fluids", Physical Review B: Condensed Matter and Materials Physics, Vol. 66, No. 22, 2002, p. 224301. https://doi.org/10.1103/PhysRevB.66.224301
  21. A. Einstein, "Investigation on the Theory of Brownian Movement", Dover, New York, 1956.
  22. S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids", Applied Physics Letters, Vol. 84, No. 21, 2004, pp. 4316-4318. https://doi.org/10.1063/1.1756684
  23. J. Koo and C. Kleinstreuer, "A new thermal conductivity model for nanofluids", Journal of Nanoparticle Research, Vol. 6, No. 6, 2004, pp. 577-588. https://doi.org/10.1007/s11051-004-3170-5
  24. R. Prasher, P. Bhattacharya, and P. E. Phelan, "Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)", Physical Review Letters, Vol. 94, No. 2, 2005, p. 025901. https://doi.org/10.1103/PhysRevLett.94.025901