DOI QR코드

DOI QR Code

Effects of hypochlorite exposure on morphology and trace organic contaminant rejection by NF/RO membranes

  • Simon, Alexander (School of Civil Mining and Environmental Engineering, The University of Wollongong) ;
  • Nghiem, Long D. (School of Civil Mining and Environmental Engineering, The University of Wollongong)
  • Received : 2013.06.02
  • Accepted : 2014.08.12
  • Published : 2014.10.25

Abstract

The impacts of membrane degradation due to chlorine attack on the rejection of inorganic salts and trace organic contaminants by nanofiltration (NF) and reverse osmosis (RO) membranes were investigated in this study. The rejection of trace contaminants was examined at environmentally relevant concentrations. Changes in the membrane surface morphology were observed as a result of chlorine exposure. A small increase in rejection was consistently observed with all four membranes selected in this study after being exposed to a low concentration of hypochlorite (100 ppm). In contrast, a higher concentration of hypochlorite (i.e., 2000 ppm) could be detrimental to the membrane separation capacity. Membranes with severe chlorine impact showed a considerable decrease in rejection over filtration time, possibly due to rearrangement of the polyamide chains under the influence of chlorine degradation and filtration pressure. The reported results indicate that loose NF membranes are more sensitive to chlorine exposure than RO membranes. The impact of hypochlorite exposure (both positive and negative) on rejection is dependent on the strength of the hypochlorite solution and is more significant for the neutral carbamazepine compound than the negatively charged sulfamethoxazole.

Keywords

Acknowledgement

Grant : Optimising nanofiltration and reverse osmosis filtration processes forwater recycling: effects of fouling and chemical cleaning on trace contaminant removal

Supported by : Australian Research Council

References

  1. Agenson, K.O. and Urase, T. (2007), "Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications", Sep. Purif. Technol., 55(2), 147-156. https://doi.org/10.1016/j.seppur.2006.11.010
  2. Antony, A., Fudianto, R., Cox, S. and Leslie, G. (2010), "Assessing the oxidative degradation of polyamide reverse osmosis membrane-Accelerated ageing with hypochlorite exposure", J. Membr. Sci., 347(1-2), 159-164. https://doi.org/10.1016/j.memsci.2009.10.018
  3. Bartels, C.R., Wilf, M., Andes, K. and Iong, J. (2005), "Design considerations for wastewater treatment by reverse osmosis", Water Sci. Technol., 51(6-7), 473-482.
  4. Bellona, C. and Drewes, J.E. (2005), "The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes", J. Membr. Sci., 249(1-2), 227-234. https://doi.org/10.1016/j.memsci.2004.09.041
  5. Bellona, C., Drewes, J.E., Xu, P. and Amy, G. (2004), "Factors affecting the rejection of organic solutes during NF/RO treatment-A literature review", Water Res., 38(12), 2795-2809. https://doi.org/10.1016/j.watres.2004.03.034
  6. Buch, P.R., Jagan Mohan, D. and Reddy, A.V.R. (2008), "Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes", J. Membr. Sci., 309(1-2), 36-44. https://doi.org/10.1016/j.memsci.2007.10.004
  7. Bui, N.-N., Lind, M.L., Hoek, E.M.V. and McCutcheon, J.R. (2011), "Electrospun nanofiber supported thin film composite membranes for engineered osmosis", J. Membr. Sci., 385-386, 10-19. https://doi.org/10.1016/j.memsci.2011.08.002
  8. Chang, K.-S., Huang, Y.-H., Lee, K.-R. and Tung, K.-L. (2010), "Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study", J. Membr. Sci., 354(1-2), 93-100. https://doi.org/10.1016/j.memsci.2010.02.076
  9. da Silva, M.K., Tessaro, I.C. and Wada, K. (2006), "Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions", J. Membr. Sci., 282(1-2), 375-382. https://doi.org/10.1016/j.memsci.2006.05.043
  10. Freger, V., Gilron, J. and Belfer, S. (2002), "TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study", J. Membr. Sci., 209(1), 283-292. https://doi.org/10.1016/S0376-7388(02)00356-3
  11. Fujioka, T., Khan, S.J., Poussade, Y., Drewes, J.E. and Nghiem, L.D. (2012), "N-nitrosamine removal by reverse osmosis for indirect potable water reuse-A critical review based on observations from laboratory-, pilot-and full-scale studies", Sep. Purif. Technol., 98, 503-515. https://doi.org/10.1016/j.seppur.2012.07.025
  12. Glater, J., Hong, S.K. and Elimelech, M. (1994), "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95(3), 325-345. https://doi.org/10.1016/0011-9164(94)00068-9
  13. Kang, G.D., Gao, C.J., Chen, W.D., Jie, X.M., Cao, Y.M. and Yuan, Q. (2007), "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane", J. Membr. Sci., 300(1-2), 165-171. https://doi.org/10.1016/j.memsci.2007.05.025
  14. Kwon, Y.N. and Leckie, J.O. (2006), "Hypochlorite degradation of crosslinked polyamide membranes I.Changes in chemical/morphological properties", J. Membr. Sci., 283(1-2), 21-26. https://doi.org/10.1016/j.memsci.2006.06.008
  15. Kwon, Y.N., Tang, C.Y. and Leckie, J.O. (2006), "Change of membrane performance due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 102(6), 5895-5902. https://doi.org/10.1002/app.25071
  16. Kwon, Y.N., Tang, C.Y. and Leckie, J.O. (2008), "Change of chemical composition and hydrogen bonding behavior due to chlorination of crosslinked polyamide membranes", J. Appl. Polym. Sci., 108(4), 2061-2066. https://doi.org/10.1002/app.25657
  17. Lopez-Munoz, M.J., Sotto, A., Arsuaga, J.M. and Van der Bruggen, B. (2009), "Influence of membrane, solute and solution properties on the retention of phenolic compounds in aqueous solution by nanofiltration membranes", Sep. Purif. Technol., 66(1), 194-201. https://doi.org/10.1016/j.seppur.2008.11.001
  18. Nghiem, L.D.and Coleman, P.J. (2008), "NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling", Sep. Purif. Technol., 62(3), 709-716. https://doi.org/10.1016/j.seppur.2008.03.027
  19. Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2004), "Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms", Environ. Sci. Technol., 38(6), 1888-1896. https://doi.org/10.1021/es034952r
  20. Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2005), "Pharmaceutical retention mechanisms by nanofiltration membranes", Environ. Sci. Technol., 39(19), 7698-7705. https://doi.org/10.1021/es0507665
  21. Nghiem, L.D., Schafer, A.I. and Elimelech, M. (2006), "Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane", J. Membr. Sci., 286(1-2), 52-59. https://doi.org/10.1016/j.memsci.2006.09.011
  22. Nghiem, L.D., Espendiller, C. and Braun, G. (2008a), "Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes", Water Sci. Technol., 58(1), 163-169. https://doi.org/10.2166/wst.2008.647
  23. Nghiem, L.D., Vogel, D. and Khan, S. (2008b), "Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator", Water Res., 42(15), 4049-4058. https://doi.org/10.1016/j.watres.2008.06.005
  24. Semiao, A.J.C. and Schafer, A.I. (2013), "Removal of adsorbing estrogenic micropollutants by nanofiltration membranes.Part A-Experimental evidence", J. Membr. Sci., 431, 244-256. https://doi.org/10.1016/j.memsci.2012.11.080
  25. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310. https://doi.org/10.1038/nature06599
  26. Simon, A., Nghiem, L.D., Le-Clech, P., Khan, S.J. and Drewes, J.E. (2009), "Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes", J. Membr. Sci., 340(1-2), 16-25. https://doi.org/10.1016/j.memsci.2009.05.005
  27. Simon, A., Price, W.E. and Nghiem, L.D. (2013), "Impact of chemical cleaning on the nanofiltration of pharmaceutically active compounds (PhACs):The role of cleaning temperature", J. Taiwan Inst. Chem. E., 44(5), 713-723. https://doi.org/10.1016/j.jtice.2013.01.030
  28. Soice, N.P., Maladono, A.C., Takigawa, D.Y., Norman, A.D., Krantz, W.B. and Greenberg, A.R. (2003), "Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes", J. Appl. Polym. Sci., 90(5), 1173-1184. https://doi.org/10.1002/app.12774
  29. Soice, N.P., Greenberg, A.R., Krantz, W.B. and Norman, A.D. (2004), "Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis", J. Membr. Sci., 243(1-2), 345-355. https://doi.org/10.1016/j.memsci.2004.06.039
  30. Tang, C.Y., Kwon, Y.-N. and Leckie, J.O. (2009), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I.FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1-3), 149-167. https://doi.org/10.1016/j.desal.2008.04.003
  31. Urase, T. and Sato, K. (2007), "The effect of deterioration of nanofiltration membrane on retention of pharmaceuticals", Desalination, 202(1-3), 385-391. https://doi.org/10.1016/j.desal.2005.12.078
  32. Van der Bruggen, B., Verliefde, A., Braeken, L., Cornelissen, E.R., Moons, K., Verberk, J., van Dijk, H.J.C. and Amy, G. (2006), "Assessment of a semi-quantitative method for estimation of the rejection of organic compounds in aqueous solution in nanofiltration", J. Chem. Technol. Biotechnol., 81(7), 1166-1176. https://doi.org/10.1002/jctb.1489
  33. Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purif. Technol., 63(2), 251-263. https://doi.org/10.1016/j.seppur.2008.05.010
  34. Verliefde, A.R.D., Cornelissen, E.R., Heijman, S.G.J., Petrinic, I., Luxbacher, T., Amy, G.L., Van der Bruggen, B. and van Dijk, J.C. (2009), "Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes", J. Membr. Sci., 330(1-2), 90-103. https://doi.org/10.1016/j.memsci.2008.12.039
  35. Wilf, M. and Alt, S. (2000), "Application of low fouling RO membrane elements for reclamation of municipal wastewater", Desalination, 132(1-3), 11-19. https://doi.org/10.1016/S0011-9164(00)00130-2
  36. Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. and Thoeye, C. (2005), "The role of membrane processes in municipal wastewater reclamation and reuse", Desalination, 178(1-3), 1-11. https://doi.org/10.1016/j.desal.2004.12.014
  37. Xu, P., Drewes, J.E., Kim, T.-U., Bellona, C. and Amy, G. (2006), "Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications", J. Membr. Sci., 279(1-2), 165-175. https://doi.org/10.1016/j.memsci.2005.12.001

Cited by

  1. Synergetic effect of graphene oxide nanosheets embedded in the active and support layers on the performance of thin-film composite membranes vol.525, 2017, https://doi.org/10.1016/j.memsci.2016.10.034
  2. Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications vol.189, 2017, https://doi.org/10.1016/j.seppur.2017.07.080
  3. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies vol.541, 2017, https://doi.org/10.1016/j.memsci.2017.06.092
  4. Bench and pilot scale performance assessment of recycled membrane converted from old nanofiltration membranes pp.1479-487X, 2018, https://doi.org/10.1080/09593330.2018.1526218
  5. Role of Operating Conditions in a Pilot Scale Investigation of Hollow Fiber Forward Osmosis Membrane Modules vol.9, pp.6, 2019, https://doi.org/10.3390/membranes9060066
  6. Reuse potential of spent RO membrane for NF and UF process vol.11, pp.5, 2014, https://doi.org/10.12989/mwt.2020.11.5.323
  7. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin vol.262, pp.None, 2014, https://doi.org/10.1016/j.seppur.2021.118300