Silicon Solar Cell Efficiency Improvement with surface Damage Removal Etching and Anti-reflection Coating Process

표면결함식각 및 반사방지막 열처리에 따른 태양전지의 효율 개선

  • Cho, Chan Seob (Shool of Electrical Engineering, Kyungpook National University) ;
  • Oh, Jeong Hwa (Samsung Electronics) ;
  • Lee, Byeungleul (School of Mechatronics Engineering, Korea University of Technology and Education) ;
  • Kim, Bong Hwan (Department of Electronics Engineering, Catholic University of Daegu)
  • 조찬섭 (경북대학교 산업전자공학부) ;
  • 오정화 (삼성전자) ;
  • 이병렬 (한국기술교육대학교 메카트로닉스공학부) ;
  • 김봉환 (대구가톨릭대학교 전자공학과)
  • Received : 2014.05.28
  • Accepted : 2014.06.20
  • Published : 2014.06.30

Abstract

In this study general solar cell production process was complemented, with research on improvement of solar cell efficiency through surface structure and thermal annealing process. Firstly, to form the pyramid structure, the saw damage removal (SDR) processed surface was undergone texturing process with reactive ion etching (RIE). Then, for the formation of smooth pyramid structure to facilitate uniform doping and electrode formation, the surface was etched with HND(HF : HNO3 : D.I. water=5 : 100 : 100) solution. Notably, due to uniform doping the leakage current decreased greatly. Also, for the enhancement and maintenance of minority carrier lifetime, antireflection coating thermal annealing was done. To maintain this increased lifetime, front electrode was formed through Au plating process without high temperature firing process. Through these changes in two processes, the leakage current effect could be decreased and furthermore, the conversion efficiency could be increased. Therefore, compared to the general solar cell with a conversion efficiency of 15.89%, production of high efficiency solar cell with a conversion efficiency of 17.24% was made possible.

Keywords

References

  1. Jha, A. R., "Solar cell Technology and Applications", Auerbach Publications, 2009.
  2. Dimroth, F., Kurtz, S., "High-efficiency Multi Junction Solar Cells," MRS BULLETIN, Vol. 32, pp. 230-235, 2007. https://doi.org/10.1557/mrs2007.27
  3. Vazsonyi, E., De Clercq, K., Einhaus, E., Kerschaver, V., Said, K., Poortmans, J., Szlufcik, J., Nijs, J., "Improved anisotropic etching process for industrial texturing of silicon solar cells", Sol. Energy Mater. Sol. Cells, Vol. 57 pp. 179-188, 1999. https://doi.org/10.1016/S0927-0248(98)00180-9
  4. Iencinella, D. , Centurioni, E., Rizzoli, R., Zignani, F., "An optimized texturing process for silicon solar cell substrates using TMAH", Sol. Energy Mater. Sol. Cells, Vol. 87, pp. 725-732, 2005. https://doi.org/10.1016/j.solmat.2004.09.020
  5. Dekkers, H. F. W., Duerinckx, F., Szlufcik, J., Nijs, J., "Silicon surface texturing by reactive ion etching", OPTO-Electronics review Vol. 8, pp. 311-316, 2000.
  6. Yoo, J.S., Parm, I.O., Gangopadhyay, U., Kim, K., Dhungel, S. K., Mangalaraj, D., Yi, J., "Black silicon layer formation for application in solar cells", Solar Energy Materials & Solar Cells Vol. 90, pp. 3085-3093, 2006. https://doi.org/10.1016/j.solmat.2006.06.015
  7. Yoo, J. Kim, K., Thamilselvan, M., Lakshminarayn, N., Kim, Y., Lee, J., Yoo, K., Yi, J., "RIE texturing optimization for thin c-Si solar cells in $SF_{6}/O_{2}$ plasma", Journal of Physics D: applied physics, Vol. 41, pp. 125205, 2008. https://doi.org/10.1088/0022-3727/41/12/125205
  8. Mehran, M., Sanaee, Z., Abdolahad, M., Mohajerzadeh, S., "Controllable silicon nano-grass formation using a hydrogenation assisted deep reactive ion etching". Materials Science in Semiconductor Processing, Vol. 14, pp. 199-206, 2011. https://doi.org/10.1016/j.mssp.2011.02.014
  9. Jansen, H.V., Boer, de M.J., Ma, K., Girones, M., Unnikrishnan, S., Louwerse, M.C., Elwenspoek, M.C., "Black silicon method XI: oxygen pulses in $SF_{6}$ plasma", journal of micromechnics and microengineering, Vol. 20, pp. 1-12, 2010.
  10. Park, H., Lee, J. S., Kwon, S., Yoon, S., Kim, D., "Effect of surface morphology on screen printed solar cells", Current Applied Physics, Vol. 10, pp.113-118, 2010. https://doi.org/10.1016/j.cap.2009.05.005
  11. Santbergen, R., van Zolingen, R. J. C., "The absorption factor of crystalline silicon PV cells:A numerical and experimental study", Solar Energy Materials & Solar Cells Vol. 92, pp. 432-444, 2008. https://doi.org/10.1016/j.solmat.2007.10.005
  12. Jo, J., Kong, D., Cho, C., Kim, B., Bae, Y., Lee, J., "Black Silicon of Pyramid Structure Formation According to the RIE Process Condition", Journal of Sensor Science and Technology, Vol. 20, No. 3 pp. 207-212, 2011. https://doi.org/10.5369/JSST.2011.20.3.207
  13. Dixit, P., Miao, J., "Effect of $SF_{6}$ flow rate on the etched surface profile and bottom grass formation in deep reactive ion etching process", Journal of Physics: Conference Series Vol. 34, pp. 577-582, 2006. https://doi.org/10.1088/1742-6596/34/1/095
  14. Burtsev, A., Li, Y. X., Zeijl, H. W., Beenakker, C. I. M, "An anisotropic U-shaped $SF_{6}$-based plasma silicon trench etching investigation", Microelectronic Engineering Vol. 40, pp. 85-97, 1998. https://doi.org/10.1016/S0167-9317(98)00149-X
  15. Jansen, H., de Boer, M., Burger, J., Legtenberg, R., Elwenspoek, M., "The black silicon method II: The effect of mask material and loading on the reactive ion etching of deep silicon trenches", Microelectronic Engineering Vol. 27, pp. 475-480, 1995 https://doi.org/10.1016/0167-9317(94)00149-O
  16. Robbins, H., Schwartz, B., "Chemical etching of silicon 1", Journal of the Electrochemical Society, Vol.106, pp.505 -508, 1961.