DOI QR코드

DOI QR Code

ON THE EXTENDED HAAGERUP TENSOR PRODUCT IN OPERATOR SPACES

  • Received : 2013.07.09
  • Accepted : 2013.10.23
  • Published : 2014.03.01

Abstract

We describe the Haagerup tensor product ${\ell}^{\infty}{\otimes}_h{\ell}^{\infty}$ and the extended Haagerup tensor product ${\ell}^{\infty}{\otimes}_{eh}{\ell}^{\infty}$ in terms of Schur product maps, and show that ${\ell}^{\infty}{\otimes}_h{\ell}^{\infty}{\cap}\mathbb{B}({\ell}^2)$(resp. ${\ell}^{\infty}{\otimes}_{eh}{\ell}^{\infty}{\cap}\mathbb{B}({\ell}^2)$) coincides with $c_0{\otimes}_hc_0{\cap}\mathbb{B}({\ell}^2)$(resp. $c_0{\otimes}_{eh}c_0{\cap}\mathbb{B}({\ell}^2)$). For $C^*2$-algebras A, B, it is shown that $A{\otimes}_hB=A{\otimes}_{eh}B$ if and only if A or B is finite-dimensional.

Keywords

References

  1. D. P. Blecher and C. Le Merdy, Operator Algebras and Their Modules, London Math. Soc. Monogr. New Ser. 30, Oxford Univ. Press, Oxford, 2004.
  2. D. P. Blecher and V. I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262-292. https://doi.org/10.1016/0022-1236(91)90042-4
  3. D. P. Blecher and R. R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. 45 (1992), no. 1, 126-144.
  4. E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257-276. https://doi.org/10.1512/iumj.1987.36.36015
  5. E. G. Effros and Z.-J. Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329-337. https://doi.org/10.4153/CMB-1991-053-x
  6. E. G. Effros and Z.-J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), no. 2, 257-284. https://doi.org/10.1016/0022-1236(91)90111-H
  7. E. G. Effros and Z.-J. Ruan, Operator spaces, J. London Math. Soc. Monogr. New Ser. 23, Oxford Univ. Press, New York, 2000.
  8. E. G. Effros and Z.-J. Ruan, Operator space tensor products and Hopf convolution algebras, J. Operator Theory 50 (2003), no. 1, 131-156.
  9. T. Itoh and M. Nagisa, Schur products and module maps on B(${\mathcal{H}}$), Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 253-268. https://doi.org/10.2977/prims/1195143103
  10. V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv. Math. 78, Cambridge Univ. Press, Cambridge, 2002.
  11. V. I. Paulsen and R. R. Smith, Diagonals in tensor products of operator algebras, Proc. Edinb. Math. Soc. 45 (2002), no. 3, 647-652.
  12. G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer Verlag, 2001.
  13. G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Notes Ser. 294, Cambridge Univ. Press, Cambridge, 2003.
  14. R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), no. 1, 156-175. https://doi.org/10.1016/0022-1236(91)90139-V
  15. N. Spronk, Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. London Math. Soc. 89 (2004), no. 1, 161-192. https://doi.org/10.1112/S0024611504014650