DOI QR코드

DOI QR Code

Dislocations as native nanostructures - electronic properties

  • Received : 2013.05.30
  • Accepted : 2013.11.11
  • Published : 2014.03.25

Abstract

Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.

Keywords

References

  1. Alexander, H. (1986), "Dislocations in covalent crystals", Dislocat. Solid., 7, 113-234.
  2. Alexander, H. and Teichler, H. (1991), Dislocations, Electronic Structure and Properties of Semiconductors,249-319.
  3. Amelinckx, S. (1982), "Dislocations in particular structures", Dislocat. Solid., 2, 67-460.
  4. Aubert, J.J. and Bacmann, J.J. (1987), "Czochralski growth of silicon bicrystals", Rev. Phys. Appl., 22(7),515-518. https://doi.org/10.1051/rphysap:01987002207051500
  5. Bengtsson, S., Andersson, G.I., Andersson, M.O. and Engstrom, O. (1992), "The bonded unipolar siliconsilicon junction", J. Appl. Phys., 72(1), 124-140. https://doi.org/10.1063/1.352172
  6. Bollmann, W. (1970), Crystal Defects and Crystalline Interfaces, Springer, New York.
  7. Bulatov, V.V. and Cai, W. (2006), Computer Simulations of Dislocations, Oxford University Press, Oxford.
  8. Duesbery, M.S. and Joas, B. (1996), "Dislocation motion in silicon: the shuffle-glide controversy", Phil. Mag. Lett., 74(4), 253-258. https://doi.org/10.1080/095008396180191
  9. Gomez, A. and Hirsch, P.B. (1977), "On the mobility of dislocations in germanium and silicon", Phil. Mag.,36(1), 169-179. https://doi.org/10.1080/00318087708244455
  10. Hirth, J.P. and Lothe, J. (1982), Theory of Dislocations, Wiley Interscience, New York.
  11. Hornstra, J. (1958), "Dislocations in the diamond lattice", J. Phys. Chem. Solids, 5, 129-141. https://doi.org/10.1016/0022-3697(58)90138-0
  12. Ishikawa, Y., Yamamoto, C. and Tabe, M. (2006), "Single-electron tunneling in a silicon-on-insulator layer embedding an artificial dislocation network", Appl. Phys. Lett., 88, 073112. https://doi.org/10.1063/1.2176849
  13. Kittler, M. and Reiche, M. (2009), "Dislocations as active components in novel silicon devices", Adv. Eng. Mater., 11(4), 249-258. https://doi.org/10.1002/adem.200800283
  14. Kittler, M., Reiche, M., Arguirov, T., Mchedlidze, T., Seifert, W., Vyvenko, O.F., Wilhelm, T. and Yu, X. (2008), "Dislocations in silicon as a tool to be used in optics, electronics and biology", Solid State Phenom., 131-133, 289-292. https://doi.org/10.4028/www.scientific.net/SSP.131-133.289
  15. Kittler, M., Reiche, M., Krause, M. and Ubensee, H. (2013), "Carrier transport on dislocations", Proceedings of the International Conference on Defects in Semiconductors, Bologna.
  16. Kittler, M., Yu, X., Mchedlidze, T., Arguirov, T., Vyvenko, O.F., Seifert, W., Reiche, M., Wilhelm, T., Seibt, M., Voss, O., Wolff, A. and Fritzsche, W. (2007), "Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics", Small, 3(6), 964-973. https://doi.org/10.1002/smll.200600539
  17. Kveder, V. and Kittler, M. (2008), "Dislocations in silicon and D-band luminescence for infrared light emitters", Mat. Sci. Forum, 590, 29-56. https://doi.org/10.4028/www.scientific.net/MSF.590.29
  18. Kveder, V., Kittler, M. and Schroter, W. (2001), "Recombination activity of contaminated dislocations in silicon: a model describing electron-beam-induced current contrast behavior", Phys. Rev. B, 63, 115208. https://doi.org/10.1103/PhysRevB.63.115208
  19. Labusch, R. and Schroter, W. (1980), "Electrical properties of dislocations in semiconductors", Dislocat. Solid., 5, 127-191.
  20. Liu, Z.H., Hu, C., Huang, J.H., Chan, T.Y., Jeng, M.C., Ko, P.K. and Cheng, Y.C. (1993), "Threshold voltage model for deep-submicrometer MOSFETs", IEEE Trans. Electr. Dev., 40, 86-94. https://doi.org/10.1109/16.249429
  21. Marklund, S. (1979), "Electron states associated with partial dislocations in silicon", Phys. stat. Sol., 92, 83-89. https://doi.org/10.1002/pssb.2220920110
  22. Rauly, E., Potavin, O., Balestra, F. and Raynaud, C. (1999), "On the subthreshold swing and short channel effects in singl and double gate deep submicron SOI-MOSFETs", Solid State Electron., 43, 2033-2037. https://doi.org/10.1016/S0038-1101(99)00170-7
  23. Ravi, K.V. (1981), Imperfections and Impurities in Semiconductor Silicon, Wiley, New York.
  24. Ray, I.L.F. and Cockayne, D.J.H. (1971), "The dissociation of dislocations in silicon", Proc. R. Soc. London, A, 325, 543-554. https://doi.org/10.1098/rspa.1971.0184
  25. Reiche, M., Hiller, E. and Stolze, D. (2002), "New substrates for MEMS", Proceedings of the first IEEE International Conference on Sensors, Orlando, Fl.
  26. Reiche, M. and Kittler, M. (2011), "Structure and Properties of Dislocations in Silicon", Ed. S. Basu, Crystalline Silicon - Properties and Uses.
  27. Reiche, M. and Kittler, M. (2012), "Characterization of dislocation-based nanotransistors", Proceedings of the 16th International Workshop Phys. Semicond. Devices, Eds. Y.N. Mohapatra and B. Mazhari, Kanpur, India.
  28. Reiche, M., Kittler, M., Buca, D., Hahnel, A., Zhao, Q.T., Mantl, S. and Gosele, U. (2010), "Dislocationbased Si-nanodevices", Jpn. J. Appl. Phys., 49, 04DJ02.
  29. Reiche, M., Kittler, M., Krause, M., and Ubensee, H. (2013), "Electrons on dislocations", Phys. Stat. Sol., 10(1), 40-43. https://doi.org/10.1002/pssc.201200537
  30. Reiche, M., Kittler, M., Scholz, R., Hahnel, A., and Arguirov, T. (2011), "Structure and properties of dislocations in interfaces of bonded silicon wafers", J. Phys. Conf. Ser., 281, 012017. https://doi.org/10.1088/1742-6596/281/1/012017
  31. Schroter, W. and Cerva, H. (2002), "Interaction of point defects with dislocations in silicon and germanium: electrical and optical effects", Solid State Phenom., 85-86, 67-144. https://doi.org/10.4028/www.scientific.net/SSP.85-86.67
  32. Seitz, F. (1952), "The plasticity of silicon and germanium", Phys. Rev., 88(1), 722-724. https://doi.org/10.1103/PhysRev.88.722
  33. Thibault-Desseaux, J., Putaux, J.L., Bourret, A. and Kirchner, H.O.K. (1989), "Dislocations stopped by the= 9(122) grain boundary in Si. An HREM study of thermal activation", J. Phys. France, 50, 2525-2540. https://doi.org/10.1051/jphys:0198900500180252500
  34. Tong, Q.Y., and Gosele, U. (1999), Semiconductor Wafer Bonding, Wiley, New York.
  35. Yu, X., Arguirov, T., Kittler, M., Seifert, W., Ratzke, M. and Reiche, M. (2006), "Properties of dislocation networks formed by Si wafer direct bonding", Mater. Sci. Semicond. Proc., 9, 96-101. https://doi.org/10.1016/j.mssp.2006.01.070

Cited by

  1. Electronic and Optical Properties of Dislocations in Silicon vol.6, pp.12, 2016, https://doi.org/10.3390/cryst6070074
  2. Electronic properties of dislocations vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-9836-x
  3. Electronic Properties of Dislocations vol.242, pp.1662-9779, 2015, https://doi.org/10.4028/www.scientific.net/SSP.242.141