DOI QR코드

DOI QR Code

Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions

AZ31 마그네슘합금의 시편두께 조건에 따른 실험적 피로균열전파모델 평가

  • Choi, Seon Soon (Department of Car Mechatronics Engineering, Sahmyook University)
  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Received : 2013.12.30
  • Accepted : 2014.02.05
  • Published : 2014.02.28

Abstract

It is the primary aim of this paper to propose the empirical fatigue crack propagation model fit to describe a crack growth behavior of AZ31 magnesium alloys under the different specimen thickness conditions. The empirical models estimated are Paris-Erdogan model, Walker model, Forman model, and modified-Forman model. The parameters of each model are estimated by maximum likelihood method. The statistical crack growth data needed for an estimation of empirical models are obtained by fatigue crack propagation tests under the three cases of specimen thickness. It is found that the good empirical models fit to describe a crack growth behavior of AZ31 magnesium alloys under the different specimen thickness conditions are Paris-Erdogan model and Walker model. It is also verified that a fatigue crack growth rate exponent of a empirical model may be a material constant at the specimen thickness conditions of 4.75mm and 6.60mm.

본 논문의 목적은 AZ31 마그네슘합금의 균열성장거동의 경향을 묘사할 수 있는 실험적 피로균열전파모델을 시편두께 조건에서 평가하여 적합한 모델을 제시하는 것이다. 평가에 사용된 실험적 모델은 Paris-Erdogan 모델, Walker 모델, Forman 모델, 수정된 Forman 모델이며, 각 모델의 파라미터를 통계적으로 추정하기 위하여 최우추정법을 사용하였다. 두께조건이 피로균열전파거동 예측에 미치는 영향을 고려하면서 적합한 모델을 평가하기 위해 시편두께의 3가지 조건을 변화시키면서 피로균열전파실험을 수행하여 통계적 균열성장 데이터를 획득하였다. 시편두께 조건에 따라 마그네슘합금의 균열성장거동의 경향을 잘 묘사하는 모델은 Paris-Erdogan 모델과 Walker 모델이며, 모델의 파라미터 중 피로균열성장속도지수는 시편두께가 4.75mm와 6.60mm 조건에서 재료상수가 될 수 있음을 밝혀내었다. 그러나 시편두께가 두꺼운 경우에는 양상에 차이를 보이므로 모델 선정 시 신중한 판단이 요구된다.

Keywords

References

  1. Z. Y. Nan, S. Ishihara and T. Goshima, "Corrosion Fatigue Behavior of Extruded Magnesium Alloy AZ31 in Sodium Chloride Solution," International Journal of Fatigue, Vol. 30, pp. 1181-1188, 2008. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2007.09.005
  2. K. Tokaji, M. Nakajima, and Y. Uematsu, "Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Environments," International Journal of Fatigue, Vol. 31, Issue 7, pp. 1137-1143, 2009. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2008.12.012
  3. B. L. Mordike, and T. Ebert, "Magnesium Properties-application-potential," Materials Science & Engineering (A), Vol. 302, pp. 37-45, 2001. DOI: http://dx.doi.org/10.1016/S0921-5093(00)01351-4
  4. Seon Soon CHOI, "Estimation of Empirical Fatigue Crack Propagation Model of Mg-Al-Zn Alloy under Different Specimen thicknesses," Proceedings of the KOSME Fall Conference 2010, pp. 445-446, October, 2010.
  5. Seon Soon CHOI, "Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy," Journal of the KAIS, Vol. 12, No. 2, pp. 594-599, February, 2011. DOI: http://dx.doi.org/10.5762/KAIS.2011.12.2.594
  6. Seon Soon CHOI, "AZ31 Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 4, pp. 395-400, August, 2009.
  7. Seon Soon CHOI, "Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy," Transactions of the KSME(A), Vol. 35, No. 4, pp. 375-381, April, 2011. DOI: http://dx.doi.org/10.3795/KSME-A.2011.35.4.375
  8. Seon Soon CHOI, "Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability," Journal of the KSMTE, Vol. 19, No. 6, pp. 804-811, December, 2010.
  9. Seon Soon CHOI, Ouk Sub LEE, "Effect of Mean Stress on Probability Distribution of Random Grown Crack Size in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 5, pp. 536-543, October, 2009.
  10. Seon Soon CHOI, "Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy AZ31," Transactions of the KSME(A), Vol. 33, No. 8, pp. 707-719, August, 2009. DOI: http://dx.doi.org/10.3795/KSME-A.2009.33.8.707
  11. Seon Soon CHOI, "Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Maximum Loads," Journal of the KAIS, Vol. 13, No. 2, pp. 522-528, February, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.2.522
  12. ASTM E647-00, "Standard Test Method of Fatigue Crack Growth Rates," ASTM International, 2000.
  13. A. R. Jack and A. T. Price, "Effects of thickness on fatigue crack initiation and growth in notched mild steel specimens," Acta Metallurgica, Vol. 20, pp.857-866, 1972. https://doi.org/10.1016/0001-6160(72)90078-8
  14. Y. M. Rhyim, Y. J. Lee, Y. W. Chang, C. S. Lee, "Effects of microstructure and specimen thickness on the fatigue crack closure in Al-Li 8090 alloy," Scripta Metallurgica et Materialia, Vol. 32, No. 8, pp.1119-1124, 1995. https://doi.org/10.1016/0956-716X(94)00021-9