DOI QR코드

DOI QR Code

Analysis of Jet Fuel for the Judgment of Soil Polluter

토양오염 원인자 판단을 위한 항공유 분석

  • Lim, Young-Kwan (Fuel Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Jeong, Choong-Sub (Fuel Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Han, Kwan-Wook (Fuel Technology R&D Center, Korea Petroleum Quality & Distribution Authority) ;
  • Jang, Young-Ju (Fuel Technology R&D Center, Korea Petroleum Quality & Distribution Authority)
  • 임영관 (한국석유관리원 석유기술연구소) ;
  • 정충섭 (한국석유관리원 석유기술연구소) ;
  • 한관욱 (한국석유관리원 석유기술연구소) ;
  • 장영주 (한국석유관리원 석유기술연구소)
  • Received : 2013.08.07
  • Accepted : 2013.12.06
  • Published : 2014.02.10

Abstract

The significance of soil environment is gradually increased due to the soil and underwater contamination caused by petroleum leak accidents. It requires a high cost and long period for the purification of soil compared with other environmental matrix such as water and air. For this reason, it has been embroiled in a legal conflict to find the pollution source and charge of cleanup. In this study, we analyzed the physical properties and typical additives of jet fuel to search a method that can distinguish kerosene and jet fuel contamination. In particular, the chemical marker in kerosene was visualized by the developer and the additives in jet fuel, such as antioxidant and metal deactivator were detected by GC-MS. This study could be used to judge petroleum source at soil contaminant accident sites.

석유누출 사고로 인해 토양과 지하수 오염이 점차 증가되면서, 토양환경에 대한 중요성이 늘고 있다. 토양오염은 다른 환경오염에 비해 많은 정화비용과 긴 정화기간이 요구된다. 이런 이유로 토양오염이 발생되면, 어떤 오염물질에 의해 토양이 오염되었으며, 토양정화의 책임이 있는 오염자가 누구인지 법적 분쟁이 많이 발생되고 있다. 본 연구에서는 토양오염을 발생시킬 수 있는 항공유에 대한 물성 분석과 함께 항공유 내의 특정 첨가제를 분석함으로써 등유와 항공유의 구분법을 찾아내었다. 특히 발색제에 의해 등유 내 화학적 식별제만 발색되었으며, GC-MS 분석결과 항공유에서만 산화방지제와 금속불활성제가 분석되었다. 이는 추후 항공유에 의한 토양오염 야기 시, 어떤 석유제품에 의한 오염인지 쉽게 판단이 가능할 것이다.

Keywords

References

  1. S. A. Ha and M. Y. You, A study on treatment of a contaminated soil by oil using continuous system of high temperature heating element and microwave, J. Soil & Groundwater Env., 17, 8-12 (2012). https://doi.org/10.7857/JSGE.2012.17.1.008
  2. X. Y. Liao, T. B. Chen, H. Xie, and Y. R. Liu, Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China, Environ Int., 31, 791-798 (2005). https://doi.org/10.1016/j.envint.2005.05.030
  3. E. R. Park, K. R. Lee, C. I. Seo, and C. H. Cho, A field study on the evaluation of slurping and bioaugmentation effect in petroleum contaminate area, J. Soil & Groundwater Env., 17, 32-38 (2012). https://doi.org/10.7857/JSGE.2012.17.3.032
  4. G. P. Glasby, A biogenic origin of hydrocarbons : an historical overview, Resour. Geol., 56, 85-98 (2006).
  5. T. Sayara, M. Sarra, and A. Sanchez, Effect of compost stability and contaminant concentration on the bioremediation of PAHscontaminated soil through composting, J. Hazard. Mater., 179, 999-1006 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.104
  6. Y. K. Lim, C. S. Jung, and K. W. Han, Analysis of physical properties and total petroleum hydrocarbon for soil contamination, Appl. Chem. Eng., 23, 618-623 (2012).
  7. Environmental damage report of U.S army base (http://usacrime. or.kr) (2008).
  8. S. E. Taylor, Component interactions in jet fuels : fuel system icing inhibitor additive, Energy & Fuels, 22, 2396-2404 (2008). https://doi.org/10.1021/ef800090p
  9. World Jet Fuel Specifications with Avgas supplement, 2008 edition.
  10. Business act for quality standard, inspection method and inspection fee of petroleum product, Ministry of Commerce, Industry and Energy, 2011-302.
  11. I. S. Bea, J. S. Yun, J. H. Jung, and S. W. Eom, Seoul Research Institute of Public Health & Environment (SIHE), 38, 477-482 (2002).
  12. D. J. Cookson, C. P. Lloyd, and B. E. Smith, Investigation of the chemical basis of kerosene specification properties, Energy & Fuels, 1, 438-447 (1987). https://doi.org/10.1021/ef00005a011
  13. Soil Environment Conservation Act, Degree of the Ministry of Environment-463.
  14. Y. K. Lim, D. K. Kim, E. S. Yim, and S. C. Shin, Determination of visible marker in petroleum using HPLC, Appl. Chem. Eng., 21, 306-310 (2010).

Cited by

  1. Analysis of Total Petroleum Hydrocarbon in Domestic Distribution Petroleum vol.27, pp.5, 2016, https://doi.org/10.14478/ace.2016.1065
  2. 토양 내 복합유종에 의한 오염 해석 연구 vol.22, pp.1, 2017, https://doi.org/10.7857/jsge.2017.22.1.013
  3. 남극유 대체연료 적합성 연구 vol.28, pp.4, 2017, https://doi.org/10.14478/ace.2017.1044
  4. 오염토양 내 석유제품 판별을 위한 TPH 및 BTEX 분석 vol.33, pp.6, 2017, https://doi.org/10.9725/kstle.2017.33.6.263
  5. Multi-dimensional GC-MS를 이용한 항공터빈유의 첨가제 분석 vol.35, pp.4, 2014, https://doi.org/10.12925/jkocs.2018.35.4.1260
  6. 복합유류 토양오염에 따른 유종 해석 vol.24, pp.1, 2014, https://doi.org/10.7857/jsge.2019.24.1.017