DOI QR코드

DOI QR Code

유전체장벽방전 플라즈마 중합을 이용한 양어 사료의 소수성 코팅

Hydrophobic Coating on Fish Feed Using Dielectric Barrier Discharge Plasma Polymerization

  • 이상백 (제주대학교 생명화학공학과) ;
  • 트린쾅 흥 (제주대학교 생명화학공학과) ;
  • 조진오 (제주대학교 생명화학공학과) ;
  • 정준범 (제주대학교 해양의생명과학부) ;
  • 임태헌 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Lee, Sang Baek (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Hung, Trinhquang (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jung, Jun Bum (School of Marine Biomedical Sciences, Jeju National University) ;
  • Im, Tae Heon (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 투고 : 2014.01.03
  • 심사 : 2014.01.29
  • 발행 : 2014.04.10

초록

양어 사료의 부상시간을 연장시켜, 사료 소비율을 높이고 양식장 수질오염을 저하시키기 위해 사료에 소수성 코팅을 하였다. 상압 유전체장벽방전 플라즈마 반응기 시스템에서 헥사메틸다이실록세인(HMDSO), 톨루엔 및 n-헥세인을 전구물질로 사용하여 사료 입자의 표면에 코팅 층을 형성시켰다. 공정 변수인 플라즈마 구동을 위한 입력 전력, 전구물질 종류, 코팅시간을 변화시키며 코팅 성능을 비교하였다. 코팅된 사료 표면의 물리, 화학적 성질은 접촉각 측정기와 퓨리에 변환 적외선 분광광도계를 이용하여 조사하였다. 소수성 플라즈마 코팅 후 물의 접촉각 증가는 표면이 소수성으로 변화하였음을 나타냈으며, 코팅된 시료의 적외선 분광 스펙트럼을 통해 소수성 피막이 $CH_3$, Si-O-Si, Si-C로 구성되어 있음을 알 수 있었다. 코팅된 사료의 부상시간이 미코팅 사료에 비해 수초에서 3 min까지 증가하였으며, 플라즈마 코팅방법이 사료의 부상성능을 향상시키는 방법으로 사용될 수 있음을 보여 주었다. 코팅 직후 시료에 비해 6일 경과 후 시료의 물 접촉각이 크게 증가하였는데, 이를 통해 에이징 효과를 확인할 수 있었다.

A plasma hydrophobic coating on commercial fish feed was conducted to prolong the floating time of feed, thereby enhancing the feed consumption rate and reducing the contamination of water in fish farms. The hydrophobic coating on the fish feed was prepared using an atmospheric-pressure dielectric barrier discharge (DBD) plasma with hexamethyldisiloxane (HMDSO), toluene and n-hexane as the precursors. The effect of the parameters such as input power, precursor type and coating time on the coating performance were examined. The physicochemical properties of the coating layer were analyzed using a Fourier transform infrared (FTIR) spectrometer and a contact angle (CA) analyzer. The water CA increased after the coating preparation, indicating that the surface changed from hydrophilic to hydrophobic. The FTIR characterization revealed that the hydrophobic layer was comprised of functional groups such as $CH_3$, Si-O-Si and Si-C. As a result of the hydrophobic coating, the floating time of the fish feed increased from several seconds to 3 minutes, which suggested that the plasma coating method could be a viable means for practical applications. Compared to the water CA measured as soon as the coating layer was prepared, the 6-day aged sample exhibited a substantial CA increase, confirming the aging effect on the improvement of the hydrophobicity.

키워드

참고문헌

  1. F. Natale, J. Hofherr, G. Fiore, and J. Virtanen, Interactions between aquaculture and fisheries. Mar. Policy 38, 205-213 (2013). https://doi.org/10.1016/j.marpol.2012.05.037
  2. G. Merino, M. Barange, C. Mullon, and L. Rodwell, Impacts of global environmental change and aquaculture expansion on marine ecosystems, Global Environ. Change 20, 586-596 (2010). https://doi.org/10.1016/j.gloenvcha.2010.07.008
  3. J. Bostock, B. McAndrew, R. Richards, K. Jauncey, T. Telfer, K. Lorenzen, D. Little, L. Ross, N. Handisyde, I. Gatward, and R. Corner, Aquaculture: global status and trends, Phil. Trans. Royal Soc. Biol. Sci. 365, 2897-2912 (2010). https://doi.org/10.1098/rstb.2010.0170
  4. S. H. Cha, S. M. Kang, S. S. Je, J. S. Lee, and Y. J. Jeon, Effects of chitosan coating EP (extruded pellet) diet on blood parameters of Parrot fish, J. Chitin. Chitosan 12, 144-150 (2007).
  5. H. G. Kang, A Study on Efficiency of Flatfish Aquaculture in Korea, Master Dissertation, Pukyung National University, Pusan, Korea (2011).
  6. J. Y. Seo, H. S. Jang, K. D. Kim, G. U. Kim, and S. M. Lee, Effects of dietary composition, feeding satiation rate and feeding frequency of extruded pellets on growth and body composition of flounder paralichthys olivaceus, J. Aquacult. 18, 98-106 (2005).
  7. C. R. Crick and I. P. Parkin, Preparation and characterisation of super-hydrophobic surfaces, Chem. Eur. J. 16, 3568-3588 (2010). https://doi.org/10.1002/chem.200903335
  8. A. Nakajima, K. Hashimoto, and T. Watanabe, Recent studies on super hydrophobic films, Monatsh. Chem. 132, 31-41 (2001). https://doi.org/10.1007/s007060170142
  9. M. Ma and R. M. Hill, Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci. 11, 193-202 (2006). https://doi.org/10.1016/j.cocis.2006.06.002
  10. A. Kumar, Gaurav, A. K. Malik, D. K. Tewary, and B. Singh, A review on development of solid phase microextraction fibers by sol gel methods and their applications, Anal. Chim. Acta 610, 1-14 (2008). https://doi.org/10.1016/j.aca.2008.01.028
  11. Y. Y. Yan, N. Gao, and W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Adv. Colloid Interface Sci. 169, 80-105 (2011). https://doi.org/10.1016/j.cis.2011.08.005
  12. D. Merche, N. Vandencasteele, and F. Reniers, Atmospheric plasmas for thin film deposition: A critical review, Thin Solid Films 520, 4219-4236 (2012). https://doi.org/10.1016/j.tsf.2012.01.026
  13. R. Morent, N. D. Geyter, S. V. Vlierberghe, and P. Dubruel, Organic-inorganic behaviour of HMDSO films plasma‐polymerized at atmospheric pressure, Surf. Coat. Technol. 203, 1366-1372 (2009). https://doi.org/10.1016/j.surfcoat.2008.11.008
  14. J. Friedrich, Mechanisms of plasma polymerization-Reviewed from a chemical point of view, Plasma Proc. Polym. 8, 783-802 (2011). https://doi.org/10.1002/ppap.201100038
  15. Z. Fang, X. Qiu, Y. Qiu, and E. Kuffel, Dielectric barrier discharge in atmospheric air for glass surface treatment to enhance hydrophobicity, IEEE Trans. Plasma Sci. 34, 1216-1222 (2006).
  16. N. Vandencasteele and F. Reniers, Plasma modified polymer surfaces: Characterization using XPS, J. Electron. Spectrosc. Relat. Phenom. 178-179, 394-408 (2010). https://doi.org/10.1016/j.elspec.2009.12.003
  17. Y. Y. Ji, Y. C. Hong, S. H. Lee, S. D. Kim, and S. S. Kim, Formation of super hydrophobic and water repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmospheric pressure plasma polymerization, Surf. Coat. Technol. 202, 5663-5667 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.151
  18. U. Lommatzsch and J. Ihde, Plasma polymerization of HMDSO with an atmospheric pressure plasma jet for corrosion protection of aluminum and low adhesion surfaces, Plasma Proc. Polym. 6, 642-648 (2009). https://doi.org/10.1002/ppap.200900032
  19. N. D. Geyter, R. Morent, L. Gengembre, C. Leys, E. Payen, S. V. Vlierberghe, and E. Schacht, Increasing the hydrophobicity of a PP film using a helium/$CF_4$ DBD treatment at atmospheric pressure, Plasma Chem. Plasma Proc. 28, 289-298 (2008). https://doi.org/10.1007/s11090-008-9124-4
  20. G. H. Kim, S. Y. Jeong, and H. C. Kwon, Capacitance between an atmospheric discharge plasma and the dielectric electrode in the parallel cell reactor, J. Korean Phys. Soc. 49, 1307-1311 (2006).
  21. K. Nishikida and J. Coates, Infrared and raman analysis of polymers. In: H. Lobo and J. V. Bonilla (eds.). Handbook of Plastics Analysis, 201-340, Marcel Dekker Inc., NY, USA (2003).
  22. A. Ramamoorthy, M. Rahman, D. A. Mooney, J. M. D. Macelroy, and D. P. Dowling, The influence of process parameters on chemistry, roughness and morphology of siloxane films deposited by an atmospheric plasma jet system, Plasma Proc. Polym. 6, S530-S536 (2009). https://doi.org/10.1002/ppap.200800213
  23. R. Morent, N. D. Geyter, S. V. Vlierberghe, P. Dubruel, C. Leys, L. Gengembre, E. Schacht, and E. Payen, Deposition of HMDSO based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge, Prog. Org. Coat. 64, 304-310 (2009). https://doi.org/10.1016/j.porgcoat.2008.07.030
  24. R. Lamendola, R. d'Agostino, and F. Fracassi, Thin film deposition from hexamethyldisiloxane fed glow discharges, Plasmas Polym. 2, 147-164 (1997). https://doi.org/10.1007/BF02766151
  25. A. Kondyurin, O. Polonskyi, N. Nosworthy, J. Matousek, P. Hlidek, H. Biederman, and M. M. M. Bilek, Covalent attachment and bioactivity of horseradish peroxidase on plasma polymerized hexane coatings, Plasma Proc. Polym. 5, 727-736 (2008). https://doi.org/10.1002/ppap.200800010
  26. Y. J. Yu, J. G. Kim, S. H. Cho, and J. H. Boo, Plasma‐polymerized toluene films for corrosion inhibition in microelectronic devices, Surf. Coat. Technol. 162, 161-166 (2003). https://doi.org/10.1016/S0257-8972(02)00582-0
  27. C. H. Hillborg, Loss and Recovery of Hydrophobicity of Polydimethylsiloxane after Exposure to Electrical Discharges, Nykopia, Solna, Sweden (2001).
  28. H. Yasuda and A. K. Sharma, Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis, J. Polym. Sci. Polym. Phys. Ed. 19, 1285-1291 (1981). https://doi.org/10.1002/pol.1981.180190901
  29. J. Kim, T. H. Kim, J. G. Oh, S. H. Noh, J. S. Lee, K. H. Park, S. Ha, and H. Kang, Characterization of acetylene plasma polymer films: recovery of surface hydrophobicity by aging, Bull. Korean Chem. Soc. 30, 2589-2594 (2009). https://doi.org/10.5012/bkcs.2009.30.11.2589
  30. A. David, Y. Puydt , L. Dupuy, S. Descours, F. Sommer, M. D. Tran, and J. Viard, Surface analysis for plasma treatment characterization. In: H. Rauscher, M. Perucca, and G. Buyle (eds.). Plasma Technology for Hyperfunctional Surfaces, 91-132, WILEY-VCH Verlag GmbH & Co. KGaA, Weinneim, Germany (2010).
  31. B. Twomey, M. Rahman, G. Byrne, A. Hynes, L. A. O'Hare, L. O'Neill, and D. Dowling, Effect of plasma exposure on the chemistry and morphology of aerosol‐assisted, plasma‐deposited coatings, Plasma Proc. Polym. 5, 737-744 (2008). https://doi.org/10.1002/ppap.200800048