DOI QR코드

DOI QR Code

Nitration of 3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane

3,7,9,11-테트라옥소-2,4,6,8,10-펜타아자[3.3.3]프로펠레인의 니트로화 반응

  • Shin, Moonyong (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Ha, Tae-Hwan (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Chung, Kyoo-Hyun (Department of Chemistry, Inha University) ;
  • Kim, Jin Seuk (Agency for Defense Development) ;
  • Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University)
  • 신문용 (서울대학교 화학생물공학부) ;
  • 하태환 (서울대학교 화학생물공학부) ;
  • 정규현 (인하대학교 물리화학부) ;
  • 김진석 (국방과학연구소) ;
  • 김영규 (서울대학교 화학생물공학부)
  • Received : 2014.01.06
  • Accepted : 2014.01.28
  • Published : 2014.04.10

Abstract

Until now, there has been much efforts for the development of polycyclic molecules as high energy materials because of their high density and potential energy. However, there were only a few reports on the development of highly N-substituted polycyclic compounds due to difficulties of the synthesis. We have designed pentaazapropellanes as new high energy materials and we have recently reported unsubstituted 3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane (TOPAP) 2 as a new skeleton for high energy materials. Herein, the nitration of TOPAP 2 was reported for the first time. Thus, 2,6-dinitro-3,7,9,11-ttraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane (2,6-DNTOPAP) 5C, which is a new nitro derivative of TOPAP 2, was obtained up to 82% yield by the reaction of $NO_2BF_4$ and anhydrous $HNO_3$. The structure of 5C was determined by spectroscopic analysis.

강력한 폭발 특성을 가지며 안정성이 높은 고에너지 물질을 개발하기 위하여 밀도가 높고 잠재에너지가 큰 다중고리 화합물을 이용한 고에너지 물질이 요구되고 있다. 하지만 분자 내 질소가 여러 개 치환된 다중고리 화합물의 경우 합성의 어려움이 있어 많은 구조가 개발되지는 못하였다. 새로운 고에너지 물질 후보로 다중고리 화합물이며 분자 내 질소가 다섯개 치환된 pentanitropentaaza[3.3.3]propellane을 설계하였고, 이 중에 골격구조에 치환기가 도입되지 않은 3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane (TOPAP) 2를 최근에 합성하였다. 본 연구에서는 TOPAP 2에 최초로 니트로화 반응을 진행하여 새로운 고에너지 물질을 합성하고자 하였다. 그 결과 $NO_2BF_4$와 무수 질산을 이용하여 지금까지 보고되지 않은 2,6-dinitro-3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane 5C를 최대 82%의 수율로 처음 합성하였다. 합성한 5C의 구조는 분광학적 분석결과를 이용하여 구조를 확인하였다.

Keywords

References

  1. J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, 69-162, WILEY-VCH, Weinheim (2010).
  2. D. M. Badgujar, M. B. Talawar, S. N. Asthana, and P. P. Mahulikar, Advances in science and technology of modern energetic materials: An overview, J. Hazard. Mater., 151, 289-305 (2008) https://doi.org/10.1016/j.jhazmat.2007.10.039
  3. A. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, and D. J. Vanderah, Synthesis of polyazapolycyclic caged polynitramines, Tetrahedron, 54, 11793-11812 (1998) https://doi.org/10.1016/S0040-4020(98)83040-8
  4. W. W. Zajac Jr., T. R. Walters, and J. M. Wood, 1-Amino-3,5,7-trinitroadamantane: an unexpected oxidation product of 1,3,5,7-tetraaminoadamantane. An improvement synthesis of 1,3,5,7-tetranitroadamantane, J. Org. Chem., 54, 2468-2471 (1989). https://doi.org/10.1021/jo00271a049
  5. M. Shin, M. H. Kim, T. H. Ha, J. Jeon, K.-H. Chung, J. S. Kim, and Y. G. Kim, Synthesis of novel 2,4,6,8,10-pentaaza[3.3.3]propellane derivatives, Tetrahedron, 70, 1617-1620 (2014). https://doi.org/10.1016/j.tet.2014.01.024
  6. C. A. Burnett, J. Lagona, A. Wu, J. A. Shaw, D. Coady, J. C. Fettinger, A. I. Day, and L. Isaacs, Preparation of glycoluril monomers for expanded cucurbit[n]uril synthesis, Tetrahedron, 59, 1961-1970 (2003). https://doi.org/10.1016/S0040-4020(03)00150-9
  7. J. P. Agrawal and R. D. Hodgson, Organic Chemistry of Explosives, 191-262, John Wiley & Sons, England (2007).
  8. J. Boileu, M. Carail, and R. Gallo, Derives nitres acetyles du glycolurile, Propellants Explos. Pyrotech. 10, 118-120 (1985) https://doi.org/10.1002/prep.19850100407
  9. P. F. Pagoria, A. R. Mitchell, and E. S. Jessop, Nitroureas 11. Synthesis of bicyclic mono and dinitrourea compounds, Propellants Explos. Pyrotech., 21, 14-18 (1996). https://doi.org/10.1002/prep.19960210104
  10. M. Vedachalam, V. R. Ramakrishnan, and J. H. Boyerm, Facile synthesis and nitration of cis-syn-cis-2,6-dioxodecahydro-lH,5H-diimidaz[4,5-b:4',5'-e]pyrazine, J. Org. Chem., 56, 3413-3419 (1991) https://doi.org/10.1021/jo00010a043
  11. J. W. Fischer, R. A. Hollins, C. K. Lowe-Ma, R. A. Nissan, and R. D. Chapman, Synthesis and characterization of 1,2,3,4-cyclobutanetetranitramine derivatives, J. Org. Chem., 61, 9340-9343 (1996) https://doi.org/10.1021/jo9613040
  12. P. F. Pagoria, G. S. Lee, A. R. Mitchell, and R. D. Schmidt, A review of energetic materials synthesis, Thermochim. Acta., 384, 187-204 (2002). https://doi.org/10.1016/S0040-6031(01)00805-X

Cited by

  1. Molecular Design and Property Prediction of High Density Polynitro[3.3.3]-Propellane-Derivatized Frameworks as Potential High Explosives vol.118, pp.45, 2014, https://doi.org/10.1021/jp509549q
  2. Bis(dinitropyrazolyl)methanes as Stable High Energy Materials vol.38, pp.7, 2017, https://doi.org/10.1002/bkcs.11165
  3. Searching for a new family of modified CL-20 cage derivatives with high energy and low sensitivity vol.29, pp.3, 2018, https://doi.org/10.1007/s11224-017-1067-z
  4. Synthesis and Crystal Structure of 10-(4-Nitrobenzyl)-3,7,9,11-Tetraoxo-2,4,6,8,10-Pentaaza[3.3.3]Propellane vol.40, pp.6, 2014, https://doi.org/10.3184/174751916x14622819258876
  5. Solubility of 3,7,9,11-Tetraoxo-2,4,6,8,10-pentaaza[3.3.3] Propellane (TOPAP) in Different Pure Solvents at Temperatures between 273.15 and 318.15 K vol.61, pp.9, 2014, https://doi.org/10.1021/acs.jced.6b00349