DOI QR코드

DOI QR Code

Selective Oxidation of Amines to Imines or Nitriles by Manganese Dioxide in Air

공기 중에서 망간 다이옥사이드에 의한 아민에서 이민 또는 나이트릴로의 선택적 산화 반응

  • Kim, Yo Han (School of Chemical and Biological Engineering, Seoul National University) ;
  • Hwang, Seung Kyu (Department of Chemical Engineering, Kangwon National University) ;
  • Lee, Yoon Sik (School of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
  • 김요한 (서울대학교 화학생물공학부) ;
  • 황승규 (강원대학교 화학공학과) ;
  • 이윤식 (서울대학교 화학생물공학부) ;
  • 김정원 (강원대학교 화학공학과)
  • Received : 2014.02.24
  • Accepted : 2014.02.26
  • Published : 2014.04.10

Abstract

A simple heterogeneous system has been developed by using base treated manganese dioxide (B-$MnO_2$) for the aerobic oxidation of amines under mild reaction conditions of 1 atm of air and $50^{\circ}C$ in hexane. This system was highly efficient to oxidize various kinds of primary or secondary amines including aliphatic, aromatic, and hetero-atomic ones under the applied reaction conditions. Amines were oxidized to nitriles or diimines by the self-condensation or oxidative dehydrogenation through imine intermediate. The B-$MnO_2$ was reused for at least 5 times without any loss of its catalytic performance and showed its cost effectiveness, easy workup, and easy separation of the products for achieving the protocol of green chemistry.

염기 처리에 의한 간단한 방법으로 합성된 $MnO_2$ (B-$MnO_2$)는 불균일 촉매시스템으로 호기성 조건에서 효과적인 아민 산화반응을 보여주었다. 이 B-$MnO_2$ 촉매는 다양한 종류의 방향족, 이원자 화합물, 비활성 지방족 등의 아민의 전환에 높은 활성과 선택성을 보여주었다. 이러한 산화반응은 온화한 온도($50^{\circ}C$)와 대기압의 공기 조건하에서 아민을 중간체인 이민으로 전환하고 자가 축합(self-condensation) 또는 산화적 탈수소화(oxidative dehydrogenation)을 통해 다이이민(diimine) 또는 나이트릴(nitrile)을 생성하였다. 사용된 촉매는 여과로 쉽게 분리할 수 있었고 5번 이상의 재사용 실험에서도 일정이상의 높은 수율을 보여주었다. 따라서 B-$MnO_2$는 아민 산화반응을 통해 이민과 나이트릴을 얻음에 있어 경제적으로나 환경친환적으로 효과적인 면을 보여 줌으로써, 그린화학(green chemistry)의 목적에 적합하다.

Keywords

References

  1. A. Shafir and S. L. Buchwald, Highly selective room-temperature copper-catalyzed C-N coupling reactions, J. Am. Chem. Soc., 128, 8742-8743 (2006). https://doi.org/10.1021/ja063063b
  2. G. Alvaro and D. Savoia, Addition of organometallic reagents to imines bearing stereogenic N-substituents. Stereochemical models explaining the 1,3-asymmetric induction, Synlett., 5, 651-673 (2002).
  3. M. Shi and Y. M. Xu, Catalytic, asymmetric Baylis-Hillman reaction of imines with methyl vinyl ketone and methyl acrylate, Angew. Chem. Int. Ed., 41, 4507-4510 (2002). https://doi.org/10.1002/1521-3773(20021202)41:23<4507::AID-ANIE4507>3.0.CO;2-I
  4. S. I. Murahashi, Synthetic aspects of metal-catalyzed oxidations of amines and related reactions, Angew. Chem. Int. Ed., 34, 2443-2465 (1995). https://doi.org/10.1002/anie.199524431
  5. S. Patai, The chemistry of the carbon-nitrogen double bond (Chemistry of functional goups), 61-147, Wiley-Interscience: New York, USA (1970).
  6. D. J. HadjipavlouLitina and A. A. Geronikaki, Anti-inflammatory activity of some novel 1-[3-(aroylo)] and one 1-[3-(aryloxy)]-propyl aminothiazole in correlation with structure and lipophilicity, Arzneimittel- Forsch., 46, 805-808 (1996).
  7. F. A. Carey and R. J. Sunderberg, Advanced organic chemistry, 5th ed., 1063-1069, Kluwer Academic/Plennum Publish: New York, USA (2001).
  8. G. C. Liu, D. A. Cogan, T. D. Owens, T. P. Tang, and J. A. Ellman, Synthesis of enantiomerically pure N-tert-butanesulfinyl imines (tertbutanesulfinimines) by the direct condensation of tert-butanesulfina mide with aldehydes and ketones, J. Org. Chem., 64, 1278-1284 (1-999). https://doi.org/10.1021/jo982059i
  9. S. Sithambaram, R. Kumar, Y. C. Son, and S. L. Suib, Tandem catalysis: Direct catalytic synthesis of imines from alcohols using manganese octahedral molecular sieves, J. Catal., 253, 269-277 (2008). https://doi.org/10.1016/j.jcat.2007.11.006
  10. S. I. Murahashi and D. Zhang, Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450, Chem. Soc. Rev., 37, 1490-1501 (2008). https://doi.org/10.1039/b706709g
  11. K. Yamaguchi and N. Mizuno, Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst, Angew. Chem. Int. Ed., 42, 1480-1483 (2003). https://doi.org/10.1002/anie.200250779
  12. K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, and K. Kaneda, Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen, Chem. Commun., 5, 461-462 (2001).
  13. S. Furukawa, A. Suga, and T. Komatsu, Highly efficient aerobic oxidation of various amines using $Pd_3Pb$ intermetallic compounds as catalysts, Chem. Commun., 50, 3277-3280 (2014). https://doi.org/10.1039/c4cc00024b
  14. K. N. T. Tseng, A. M. Rizzi, and N. K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc., 135, 16352-16355 (2013). https://doi.org/10.1021/ja409223a
  15. W. F. Wei, X. W. Cui, W. X. Chen, and D. G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721 (2011). https://doi.org/10.1039/c0cs00127a
  16. L. J. Yuan, Z. C. Li, J. T. Sun, K. L. Khang, and Y. H. Zhou, Synthesis and characterization of activated $MnO_2$, Mater. Lett., 57, 1945-1948 (2003). https://doi.org/10.1016/S0167-577X(02)01109-6
  17. X. B. Fu, J. Y. Feng, H. Wang, and K. M. Ng, Room temperature synthesis of a novel gamma-$MnO_2$ hollow structure for aerobic oxidation of benzyl alcohol, Nanotechnology., 20, 375601 (2009). https://doi.org/10.1088/0957-4484/20/37/375601
  18. J. Yan, Z. J. Fan, T. Wei, Z. W. Qie, S. S. Wang, and M. L. Zhang, Preparation and electrochemical characteristics of manganese dioxide/ graphite nanoplatelet composites, Mater. Sci. Eng. B-Adv., 151, 174-178 (2008). https://doi.org/10.1016/j.mseb.2008.05.018
  19. X. C. Yu, C. Z. Liu, L. Jiang, and Q. Xu, Manganese dioxide catalyzed N-alkylation of sulfonamides and amines with alcohols under air, Org. Lett., 13, 6184-6187 (2011). https://doi.org/10.1021/ol202582c
  20. J. Lee, Y. Lee, J. K. Youn, H. B. Na, T. Yu, H. Kim, S. M. Lee, Y. M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. Hwang, J. G. Park, J. Kim, and T. Hyeon, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts, Small., 4, 143-152 (2008). https://doi.org/10.1002/smll.200700456
  21. A. V. Soldatova, C. Butterfield, O. F. Oyerinde, B. M. Tebo, and T. G. Spiro. Multicopper oxidase involvement in both Mn (II) and Mn (III) oxidation during bacterial formation of $MnO_2$, J. Biol. Inorg. Chem., 17, 1151-1158 (2012). https://doi.org/10.1007/s00775-012-0928-6
  22. J. Kim and S. S. Stahl, Cu/Nitroxyl-catalyzed aerobic oxidation of primary amines into nitriles at room temperature, ACS Catal., 3, 1652-1656 (2013). https://doi.org/10.1021/cs400360e

Cited by

  1. Methods of Nitriles Synthesis from Amines through Oxidative Dehydrogenation vol.362, pp.19, 2020, https://doi.org/10.1002/adsc.202000635