DOI QR코드

DOI QR Code

Expression Profile of Neuro-Endocrine-Immune Network in Rats with Vascular Endothelial Dysfunction

  • Li, Lujin (The Center for Drug Clinical Research, Shanghai University of Chinese Medicine) ;
  • Jia, Zhenghua (The Integration of Traditional and Western Medical Research Academy of Hebei Province) ;
  • Xu, Ling (The Center for Drug Clinical Research, Shanghai University of Chinese Medicine) ;
  • Wu, Yiling (The Integration of Traditional and Western Medical Research Academy of Hebei Province) ;
  • Zheng, Qingshan (The Center for Drug Clinical Research, Shanghai University of Chinese Medicine)
  • Received : 2014.01.27
  • Accepted : 2014.02.26
  • Published : 2014.04.30

Abstract

This study was to determine the correlation between endothelial function and neuro-endocrine-immune (NEI) network through observing the changes of NEI network under the different endothelial dysfunction models. Three endothelial dysfunction models were established in male Wistar rats after exposure to homocysteine (Hcy), high fat diet (HFD) and Hcy+HFD. The results showed that there was endothelial dysfunction in all three models with varying degrees. However, the expression of NEI network was totally different. Interestingly, treatment with simvastatin was able to improve vascular endothelial function and restored the imbalance of the NEI network, observed in the Hcy+HFD group. The results indicated that NEI network may have a strong association with endothelial function, and this relationship can be used to distinguish different risk factors and evaluate drug effects.

Keywords

References

  1. Besedovsky H, Sorkin E. Network of immune-neuroendocrine interactions. Clin Exp Immunol. 1977;27:1-12.
  2. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362:801-809. https://doi.org/10.1038/362801a0
  3. Puranik R, Celermajer DS. Smoking and endothelial function. Prog Cardiovasc Dis. 2003;45:443-458. https://doi.org/10.1053/pcad.2003.YPCAD13
  4. Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011;10:61. https://doi.org/10.1186/1475-2840-10-61
  5. Shimbo D, Muntner P, Mann D, Viera AJ, Homma S, Polak JF, Barr RG, Herrington D, Shea S. Endothelial dysfunction and the risk of hypertension: the multi-ethnic study of atherosclerosis. Hypertension. 2010;55:1210-1216. https://doi.org/10.1161/HYPERTENSIONAHA.109.143123
  6. Berger MM, Hesse C, Dehnert C, Siedler H, Kleinbongard P, Bardenheuer HJ, Kelm M, Bärtsch P, Haefeli WE. Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema. Am J Respir Crit Care Med. 2005;172:763-767. https://doi.org/10.1164/rccm.200504-654OC
  7. Koh KK. Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc Res. 2000; 47:648-657. https://doi.org/10.1016/S0008-6363(00)00146-2
  8. Muller O, Bartunek J, Hamilos M, Berza CT, Mangiacapra F, Ntalianis A, Vercruysse K, Duby C, Wijns W, De Bruyne B, Heyndrickx GR, Vanderheyden M, Holz JB, Barbato E. von Willebrand factor inhibition improves endothelial function in patients with stable angina. J Cardiovasc Transl Res. 2013;6: 364-370. https://doi.org/10.1007/s12265-012-9422-3
  9. Chen Y, Osika W, Dangardt F, Gan LM, Strandvik B, Friberg P. High levels of soluble intercellular adhesion molecule-1, insulin resistance and saturated fatty acids are associated with endothelial dysfunction in healthy adolescents. Atherosclerosis. 2010;211:638-642. https://doi.org/10.1016/j.atherosclerosis.2010.03.013
  10. Cho YS, Kim CH, Ha TS, Lee SJ, Ahn HY. Ginsenoside rg2 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell. Korean J Physiol Pharmacol. 2013;17:133-137. https://doi.org/10.4196/kjpp.2013.17.2.133
  11. Durand P, Fortin LJ, Lussier-Cacan S, Davignon J, Blache D. Hyperhomocysteinemia induced by folic acid deficiency and methionine load--applications of a modified HPLC method. Clin Chim Acta. 1996;252:83-93. https://doi.org/10.1016/0009-8981(96)06325-5
  12. Wagner J, Vitali P, Palfreyman MG, Zraika M, Huot S. Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphenylalanine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, serotonin, and 5-hydroxyindoleacetic acid in rat cerebrospinal fluid and brain by high-performance liquid chromatography with electrochemical detection. J Neurochem. 1982;38:1241-1254. https://doi.org/10.1111/j.1471-4159.1982.tb07897.x
  13. Chapin JK, Nicolelis MA. Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations. J Neurosci Methods. 1999;94:121-140. https://doi.org/10.1016/S0165-0270(99)00130-2
  14. Chen M, Zhao L, Jia W. Metabonomic study on the biochemical profiles of a hydrocortisone-induced animal model. J Proteome Res. 2005;4:2391-2396. https://doi.org/10.1021/pr050158o
  15. del Rey A, Welsh CJ, Schwarz MJ, Besedovsky HO. Neuroimmunomodulation in health and disease. Ann N Y Acad Sci. 2012;1262:vii-viii. https://doi.org/10.1111/j.1749-6632.2012.06678.x
  16. Besedovsky HO, del Rey A. Introduction: immune-neuroendocrine network. Front Horm Res. 2002;29:1-14.
  17. Freimark D, Feinberg MS, Matezky S, Hochberg N, Shechter M. Impact of short-term intermittent intravenous dobutamine therapy on endothelial function in patients with severe chronic heart failure. Am Heart J. 2004;148:878-882. https://doi.org/10.1016/j.ahj.2004.04.013
  18. Szabó C, Pacher P, Zsengellér Z, Vaslin A, Komjáti K, Benkö R, Chen M, Mabley JG, Kollai M. Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation. Mol Med. 2004;10:28-35.
  19. Cabral MD, Teixeira P, Soares D, Leite S, Salles E, Waisman M. Effects of thyroxine replacement on endothelial function and carotid artery intima-media thickness in female patients with mild subclinical hypothyroidism. Clinics (Sao Paulo). 2011;66: 1321-1328.
  20. Wilbert-Lampen U, Trapp A, Modrzik M, Fiedler B, Straube F, Plasse A. Effects of corticotropin-releasing hormone (CRH) on endothelin-1 and NO release, mediated by CRH receptor subtype R2: a potential link between stress and endothelial dysfunction? J Psychosom Res. 2006;61:453-460. https://doi.org/10.1016/j.jpsychores.2006.07.001
  21. Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM, Zhang C. Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res. 2006;99:69-77. https://doi.org/10.1161/01.RES.0000229685.37402.80
  22. Lee SK, Lee JY, Joo HK, Cho EJ, Kim CS, Lee SD, Park JB, Jeon BH. Tat-mediated P66SHC transduction decreased phosphorylation of endothelial nitric oxide synthase in endothelial cells. Korean J Physiol Pharmacol. 2012;16:199-204. https://doi.org/10.4196/kjpp.2012.16.3.199
  23. Nicholson JK, Holmes E, Elliott P. The metabolome-wide association study: a new look at human disease risk factors. J Proteome Res. 2008;7:3637-3638. https://doi.org/10.1021/pr8005099
  24. Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab. 2007;92:1715-1723. https://doi.org/10.1210/jc.2006-1869