DOI QR코드

DOI QR Code

SEMICENTRAL IDEMPOTENTS IN A RING

  • Han, Juncheol (Department of Mathematics Education Pusan National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University) ;
  • Park, Sangwon (Department of Mathematics Dong-A University)
  • Received : 2013.07.31
  • Published : 2014.05.01

Abstract

Let R be a ring with identity 1, I(R) be the set of all nonunit idempotents in R and $S_{\ell}$(R) (resp. $S_r$(R)) be the set of all left (resp. right) semicentral idempotents in R. In this paper, the following are investigated: (1) $e{\in}S_{\ell}(R)$ (resp. $e{\in}S_r(R)$) if and only if re=ere (resp. er=ere) for all nilpotent elements $r{\in}R$ if and only if $fe{\in}I(R)$ (resp. $ef{\in}I(R)$) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ if and only if fe=efe (resp. ef=efe) for all $f{\in}I(R)$ which are isomorphic to e if and only if $(fe)^n=(efe)^n$ (resp. $(ef)^n=(efe)^n$) for all $f{\in}I(R)$ which are isomorphic to e where n is some positive integer; (2) For a ring R having a complete set of centrally primitive idempotents, every nonzero left (resp. right) semicentral idempotent is a finite sum of orthogonal left (resp. right) semicentral primitive idempotents, and eRe has also a complete set of primitive idempotents for any $0{\neq}e{\in}S_{\ell}(R)$ (resp. 0$0{\neq}e{\in}S_r(R)$).

Keywords

References

  1. G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim, and J. K. Park, Triangular matrix repre-sentations, J. Algebra 230 (2000), no. 2, 558-595. https://doi.org/10.1006/jabr.2000.8328
  2. G. Calaugareanu, Rings with lattices of idempotents, Comm. Algebra 38 (2010), no. 3, 1050-1056. https://doi.org/10.1080/00927870902897921
  3. H. K. Grover, D. Khurana, and S. Singh, Rings with multiplicative sets of primitive idempotents, Comm. Algebra 37 (2009), no. 8, 2583-2590. https://doi.org/10.1080/00927870902747217
  4. J. Han and S. Park, Additive set of idempotents in rings, Comm. Algebra 40 (2012), no. 9, 3551-3557. https://doi.org/10.1080/00927872.2011.591862
  5. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, Inc., 1991.

Cited by

  1. A note on semicentral idempotents vol.45, pp.6, 2017, https://doi.org/10.1080/00927872.2016.1233236
  2. Structure of Abelian rings vol.12, pp.1, 2017, https://doi.org/10.1007/s11464-016-0586-z