DOI QR코드

DOI QR Code

Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete

  • Ayatollahi, Majid R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Pirmohammad, Sadjad (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Sedighiani, Karo (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
  • Received : 2012.12.23
  • Accepted : 2014.02.25
  • Published : 2014.05.30

Abstract

In this paper, a four-layer road structure consisting of an edge transverse crack is simulated using three-dimensional finite element method in order to capture the influence of a single-axle wheel load on the crack propagation through the asphalt concrete layer. Different positions of the vehicular load relative to the cracked area are considered in the analyses. Linear elastic fracture mechanics (LEFM) is used for investigating the effect of the traffic load on the behavior of a crack propagating within the asphalt concrete. The results obtained show that the crack front experiences all three modes of deformation i.e., mode I, mode II and mode III, and the corresponding stress intensity factors are highly affected by the crack geometry and the vehicle position. The results also show that for many loading situations, the contribution of shear deformation (due to mode II and mode III loading) is considerable.

Keywords

References

  1. ABAQUS, User's Manual (2007), Dassault Systemes Simulia Corp, Providence, Rhode Island, V 6.7.
  2. Al-Qadi, I. and Wang, H. (2009), Evaluation of Pavement Damage Due to New Tire Designs, Research Report ICT-09-048.
  3. Ameri, M., Mansourian, A., Heidary-Khavas, M., Aliha, M.R.M. and Ayatollahi, M.R. (2011), "Cracked asphalt pavement under traffic loading - A 3D finite element analysis", Eng Fract Mech, 78, 1817-1826. https://doi.org/10.1016/j.engfracmech.2010.12.013
  4. Ayatollahi, M.R. and Aliha, M.R.M. (2006), "On determination of mode II fracture toughness using semicircular bend specimen", Int. J. Solids Struct., 43, 5217-5227. https://doi.org/10.1016/j.ijsolstr.2005.07.049
  5. Ayatollahi, M.R. and Pirmohammad, S. (2011), "Effect of asphalt cement type on the fracture behavior of asphalt mixtures", 9th In fracture conference, Istanbul, 313-319.
  6. Ayatollahi, M.R. and Torabi, A.R. (2011), "Failure assessment of notched polycrystalline graphite under tensile-shear loading", Mater. Sci. Eng., A., 528, 5685-5695. https://doi.org/10.1016/j.msea.2011.04.066
  7. Berto, F. and Lazzarin, P. (2009), "A review of the volume-based strain energy density approach applied to V-notches and welded structures", Theor Appl Fract Mech, 52 (3), 183-194. https://doi.org/10.1016/j.tafmec.2009.10.001
  8. Berto, F. and Lazzarin, P. (2014), "Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches", Mater. Sci. Eng. R., 75, 1-48. https://doi.org/10.1016/j.mser.2013.11.001
  9. Berto, F., Lazzarin, P., Kotousov, A. and Pook, L.P. (2012), "Induced out-of-plane mode at the tip of blunt lateral notches and holes under in-plane shear loading", Fatigue. Fract. Eng. Mater. Struct., 35(6), 538-555. https://doi.org/10.1111/j.1460-2695.2011.01647.x
  10. Buttlar, W.G., Armando, D.C. and Garzon, J. (2004), Development of New Methodologies for Mechanistic Design of Asphalt Overlays, Research report, Department of civil and environmental engineering, University of Illinois, Urbana Champaign.
  11. Casey, D., McNally, C., Gibney, A. and Gilchrist, M.D. (2008), "Development of a recycled polymer modified binder for use in stone mastic asphalt", J. Resour. Conserv. Recycl., 52, 1167-1174. https://doi.org/10.1016/j.resconrec.2008.06.002
  12. Dongre, R., Sharma, M.C.l. and Anderson, D.A. (1989), "Development of fracture criterion for asphalt mixes at low temperatures", Transp. Res. Rec., 1228, 94-105.
  13. Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J Basic Eng, 85, 519-525. https://doi.org/10.1115/1.3656897
  14. Emery, J. (2007), "Mitigation of asphalt pavement Top-Down cracking", 4th Int SIIV Congress, Palermo, Italy, 12-14.
  15. Garzon, J., Duarte, C.A. and Buttlar, W.G. (2010), "Computational simulations of a full-scale reflective cracking test", FAA Worldwide Airport Technology Transfer Conference, Atlantic City, New Jersey, USA.
  16. Hadi, M.N.S. and Bodhinayake, B.C. (2003), "Non-linear finite element analysis of flexible pavements", J. Adv. Eng. Software, 34, 657-662. https://doi.org/10.1016/S0965-9978(03)00109-1
  17. Harding, S., Kotousov, A., Lazzarin , P. and Berto, F. (2010), "Transverse singular effects in V-shaped notches stressed in mode II", Int J Fract, 164 (1), 1-14. https://doi.org/10.1007/s10704-010-9449-x
  18. Hussain, M.A., Pu, S.L. and Underwood, J. (1974), "Strain energy release rate for a crack under combined mode I and mode II", Fracture analysis ASTM STP 560 American Society for Testing and Materials, Philadelphia, 2-28.
  19. Im S., Ban H., Kim Y.R. (2014), "Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry", Constr Build Mater, 52, 413-421. https://doi.org/10.1016/j.conbuildmat.2013.11.055
  20. Jung, D. and Vinson, T.S. (1993), "Low temperature cracking resistance of asphalt concrete mixtures", J. Assoc. Asphalt Paving Technol., 62, 54-92.
  21. Khavandy, A. (2000), Designing Flexible Pavements in Iran Using Mechanistic Methods, Dissertation for MSc. Degree, Iran University of Science and Technology.
  22. Kim, H., Buttlar, W.G. and Chou, K.F. (2010), "Mesh-Independent fracture modeling for overlay pavement system under heavy aircraft gear loadings", J. Transp. Eng., 136, 370-378. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000101
  23. Kim, H., Wagoner, M.P. and Buttlar, W.G. (2008), "Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model", Constr. Build. Mater., 23, 2112-2120.
  24. Kim, K.W. and Hussein, M.E. (1997), "Variation of fracture toughness of asphalt concrete under low temperatures", Constr. Build. Mater., 11, 403-411. https://doi.org/10.1016/S0950-0618(97)00030-5
  25. Kim, K.W., Kweon, S.J., Doh, Y.S. and Park, T.S. (2003), "Fracture toughness of polymer modified asphalt concrete at low temperatures", Canadian J Civ Eng, 30, 406-413. https://doi.org/10.1139/l02-101
  26. Kotousov, A., Lazzarin, P., Berto, F. and Harding, S. (2010), "Effect of the thickness on elastic deformation and quasi-brittle fracture of plate components", Eng Fract Mech, 77 (11), 1665-1681. https://doi.org/10.1016/j.engfracmech.2010.04.008
  27. Lazzarin, P. and Berto, F. (2005), "From Neuber's elementary volume to Kitagawa and Atzori's diagrams: an interpretation based on local energy", Int J. Fract., 135, 33-38. https://doi.org/10.1007/s10704-005-4393-x
  28. Liang, R.Y. and Zhu, J.X. (1995), "Dynamic analysis of infinite beam or modified Vlasov subgrade", J. Transp Eng, 434-443.
  29. Li, X. and Marasteanu, M.O. (2004), "Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi-circular bend test", J. Assoc. Asphalt Paving Technol., 73, 401-426.
  30. Li, X.J. and Marasteanu, M.O. (2010), "Using semi-circular bending test to evaluate low temperature fracture resistance for asphalt concrete", J. Exp. Mech., 50, 867-876. https://doi.org/10.1007/s11340-009-9303-0
  31. Lytton, R.L. (1989), "Use of geotextiles for reinforcement and strain relief in asphaltic concrete", Geotext Geomembr, 8, 217-237. https://doi.org/10.1016/0266-1144(89)90004-6
  32. Majidzadeh, K., Kaufmann, E.M. and Ramsamooj, D.V. (1970), "Application of fracture mechanics in the analysis of pavement fatigue", J. Assoc. Asphalt Paving Technol., 40, 227-246.
  33. Miao Y., He T.G, Yang G., Zheng J.J. (2010), "Multi-domain hybrid boundary node method for evaluating top-down crack in Asphalt pavements", Eng Analysis Boundary Elements, 34, 755-760. https://doi.org/10.1016/j.enganabound.2010.04.002
  34. Molenaar, J.M.M., Liu, X. and Molenaar, A.A.A. (2003), "Resistance to crack-growth and fracture of asphalt mixture", 6th Int RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, Zurich, Switzerland, 618-625.
  35. Molenaar, J.M.M. and Molenaar, A.A.A. (2000), "Fracture toughness of asphalt in the semi-circular bend test", 2nd Eurasphalt and Eurobitume Congress, Barcelona, Spain, 509-517.
  36. Novak, M., Birgisson, B. and Roque, R. (2003), "Near-surface stress states in flexible pavements using measured radial tire contact stresses and ADINA", J. Comput Struct, 81, 859-870. https://doi.org/10.1016/S0045-7949(02)00413-3
  37. Parks, D.M. (1981), "The Inelastic Line Spring: Estimates of Elastic-Plastic Fracture Mechanics Parameters for Surface-Cracked Plates and Shells", J. Pressure Vessel Technol., 13, 246-254.
  38. Parks, D.M., Lockett, R.R. and Brockenbrough, J.R. (1981), "Stress intensity factors for surface-cracked plates and cylindrical shells using line spring finite elements", Proc. of the Winter Annual Meeting, ASME, Washington, DC.
  39. Pirmohammad, S. and Ayatollahi M.R. (2014), "Fracture resistance of asphalt concrete under different loading modes and temperature conditions", Constr Build Mater, 53, 235-242. https://doi.org/10.1016/j.conbuildmat.2013.11.096
  40. Pook, L.P. (1993), "A finite element analysis of the angle crack specimen, mixed mode fatigue and fracture", Rossmanith, Miller, Mechanical Engineering Publications, editors. ESIS, 14, 285-302.
  41. Pook, L.P. (1985), "Comments on fatigue crack growth under mixed modes I and III and pure mode III loading", Multiaxial Fatigues, In: Miller, K.J., Brown, M.W, 249-263. (Eds.), ASTM STP853, American Society for Testing and Materials, Philadelphia.
  42. Pook, L.P. (2000), "Finite element analysis of corner point displacements and stress intensity factors for narrow notches in square sheets and plates", Fatigue Fract Eng Mater Struct, 23(12), 979-992. https://doi.org/10.1046/j.1460-2695.2000.00358.x
  43. Pook, L.P. (2000), "Linear elastic fracture mechanics for engineers: theory and application", WIT press, Southampton.
  44. Pook, L.P. (2013), "A 50-year retrospective review of three-dimensional effects at cracks and sharp notches", Fatigue Fract Eng Mater Struct, 36 (8), 699-723. https://doi.org/10.1111/ffe.12074
  45. Pook, L.P. (1995), "On fatigue crack paths", J. Fatigue, 17, 5-13. https://doi.org/10.1016/0142-1123(95)93045-4
  46. Shih, C.F. and Asaro, R.J. (1988), "Elastic-plastic analysis of cracks on bimaterial interfaces- part I-small scale yielding", J. Appl. Mech., 55, 299-316. https://doi.org/10.1115/1.3173676
  47. Schollmann, M., Kullmer, G., Fulland, M. and Richard, H.A, (2001),"A new criterion for 3D crack growth under mixed mode (I+II+III) loading", Proceeding of 6th Int. Conference of Biaxial/Multiaxial Fatigue and Fracture, 2, 589-596.
  48. Schollmann, M., Richard, H.A., Kullmer, G. and Fulland, M. (2002), "A new criterion for the prediction of crack development in multiaxially loaded structures ", Int J Frac, 117, 129-141. https://doi.org/10.1023/A:1020980311611
  49. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10, 305-321. https://doi.org/10.1007/BF00035493
  50. Sih, G.C. (1990), Mechanics of fracture initiation and propagation, Kluwer Academic publishers, Dodrecht, Netherlands.
  51. Smith, D.J., Ayatollahi, M.R. and Pavier, M.J. (2001), "The role of T-stress in brittle fracture for linear elastic materials under mixed mode loading", Fatigue Fract Eng Mater Struct, 24, 137-150. https://doi.org/10.1046/j.1460-2695.2001.00377.x
  52. Song, S.H. and Paulino, G.H. (2006), "Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method", J. Solids Struct., 43, 4830-4866. https://doi.org/10.1016/j.ijsolstr.2005.06.102
  53. Su, K., Sun, L., Hachiya, Y. and Maekawa, R. (2008), "Analysis of shear stress in asphalt pavements under actual measured tire-pavement contact pressure", 6th ICPT, Sapporo, Japan.
  54. Tao, X., Yanjun, Q., Zezhong, J. and Changfa, A. (2006), "Study on compound type crack propagation behavior of asphalt concrete", Key Eng Mater, 324-325, 759-762. https://doi.org/10.4028/www.scientific.net/KEM.324-325.759
  55. Tekalur, S.A., Shukla, A., Sadd, M. and Lee, K.W. (2008), "Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading", Constr. Build. Mater., 23, 1795-1802.
  56. Uddin, W., Zhang, D. and Fernandes, F. (1994), "Finite element simulation of pavement discontinuities and dynamic load response", Transp. Res. Rec., 1448, 100-106.
  57. Wagoner, M.P., Buttlar, W.G. and Paulino, G.H. (2005), "Disk-shaped compact tension test for asphalt concrete fracture", J. Exp. Mech., 45, 270-277. https://doi.org/10.1007/BF02427951
  58. Yoder, E. and Witczak, M. (1976), Principles of Pavement Design, Second Ed., John Wiley and sons Inc., New York.
  59. Yu, H., Wu, L., Guo, L., Du, S. and He, Q. (2009), "Investigation of mixed-mode stress intensity factors for non-homogeneous materials using an interaction integral method", J. Solids Struct., 46, 3710-3724. https://doi.org/10.1016/j.ijsolstr.2009.06.019
  60. Zhou, F., Hu, S., Hu, X. and Scullion, T. (2008), Mechanistic-empirical Asphalt Overlay Thickness Design and Analysis System, Report No. FHWA/TX-09/0-5123-3, Texas Transportation Institute, College Station.
  61. Zubeck, H.K., Zeng, H.Y., Vinson, T.S. and Janoo, V.C. (1996), "Field validation of thermal stress restrained specimen test", Transp. Res. Rec., 1545, 67-74. https://doi.org/10.3141/1545-09

Cited by

  1. Impact of temperature cycling on fracture resistance of asphalt concretes vol.17, pp.4, 2016, https://doi.org/10.12989/cac.2016.17.4.541
  2. Asphalt concrete resistance against fracture at low temperatures under different modes of loading vol.110, 2015, https://doi.org/10.1016/j.coldregions.2014.11.001
  3. Characterizing mixed mode I/III fracture toughness of asphalt concrete using asymmetric disc bend (ADB) specimen vol.120, 2016, https://doi.org/10.1016/j.conbuildmat.2016.05.137
  4. Fracture resistance of HMA mixtures under mixed mode I/III loading at different subzero temperatures vol.120, 2017, https://doi.org/10.1016/j.ijsolstr.2017.05.010
  5. Study on fracture behavior of HMA mixtures under mixed mode I/III loading vol.153, 2016, https://doi.org/10.1016/j.engfracmech.2015.12.027
  6. Effect of temperature variations on fracture resistance of HMA mixtures under different loading modes vol.49, pp.9, 2016, https://doi.org/10.1617/s11527-015-0753-9
  7. Mixed Mode I/II Fracture Strength of Modified HMA Concretes Subjected to Different Temperature Conditions vol.47, pp.5, 2014, https://doi.org/10.1520/jte20180848
  8. Fracture Resistance of HMA Mixtures Modified with Nanoclay and Nano-Al2O3 vol.47, pp.5, 2014, https://doi.org/10.1520/jte20180919
  9. Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane vol.72, pp.6, 2014, https://doi.org/10.12989/sem.2019.72.6.775
  10. The effect of basalt fibres on fracture toughness of asphalt mixture vol.43, pp.7, 2020, https://doi.org/10.1111/ffe.13207
  11. Experimental investigation of fracture properties of asphalt mixtures modified with Nano Fe2O3 and carbon nanotubes vol.21, pp.8, 2014, https://doi.org/10.1080/14680629.2019.1608289