DOI QR코드

DOI QR Code

Identification of a Potential Anticancer Target of Danshensu by Inverse Docking

  • Chen, Shao-Jun (Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical College) ;
  • Ren, Ji-Long (Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Zhejiang University)
  • Published : 2014.01.15

Abstract

Objective: To study potential targets of Danshensu via dual inverse docking. Method: PharmMapper and idTarget servers were used as tools, and the results were checked with the molecular docking program autodock vina in PyRx 0.8. Result: The disease-related target HRas was rated top, with a pharmacophore model matching well the molecular features of Danshensu. In addition, docking results indicated that the complex was also matched in terms of structure, H-bonds, and hydrophobicity. Conclusion: Dual inverse docking indicates that HRas may be a potential anticancer target of Danshensu. This approach can provide useful information for studying pharmacological effects of agents of interest.

Keywords

References

  1. Abreu RM, Froufe HJ, Queiroz MJ, et al (2012). Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina. Chem Biol Drug Des, 79, 530-4 https://doi.org/10.1111/j.1747-0285.2011.01313.x
  2. Bharate SB, Singh B, Vishwakarma RA (2012). Modulation of k-Ras signaling by natural products. Curr Med Chem, 19, 2273-91
  3. Bhattacharjee B, Vijayasarathy S, Karunakar P, et al (2012). Comparative reverse screening approach to identify potential anti-neoplastic targets of saffron functional components and binding mode. Asian Pac J Cancer Prev, 13, 5605-11 https://doi.org/10.7314/APJCP.2012.13.11.5605
  4. Bhattacharjee B, Chatterjee J (2013). Identification of proapoptopic, anti-inflammatory, anti-proliferative, antiinvasive and anti-angiogenic targets of essential oils in cardamom by dual reverse virtual screening and binding pose analysis. Asian Pac J Cancer Prev, 14, 3735-42 https://doi.org/10.7314/APJCP.2013.14.6.3735
  5. Buhrman G, de Serrano V, Mattos C (2003). Organic solvents order the dynamic switch II in Ras crystals. Structure, 11, 747-51 https://doi.org/10.1016/S0969-2126(03)00128-X
  6. Chan K, Chui SH, Wong DY, et al (2004). Protective effects of Danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sci, 75, 3157-71 https://doi.org/10.1016/j.lfs.2004.06.010
  7. Chen CY (2011). TCM Database@Taiwan: the world's largest traditional Chinese medicine database for drug screening in silico. PLoS One, 6, e15939 https://doi.org/10.1371/journal.pone.0015939
  8. Chen K, Kurgan L (2009). Investigation of atomic level patterns in protein--small ligand interactions. PLoS One, 4, e4473 https://doi.org/10.1371/journal.pone.0004473
  9. Chen YZ, Ung CY (2001). Prediction of potential toxicity and side effect protein targets of a small molecule by a ligandprotein inverse docking approach. J Mol Graph Model, 20, 199-218 https://doi.org/10.1016/S1093-3263(01)00109-7
  10. Chen YZ, Zhi DG (2001). Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins, 43, 217-26 https://doi.org/10.1002/1097-0134(20010501)43:2<217::AID-PROT1032>3.0.CO;2-G
  11. Chen Z, Wang X, Zhu W, et al (2011). Acenaphtho[1,2-b]pyrrolebased selective fibroblast growth factor receptors 1 (FGFR1) inhibitors: design, synthesis, and biological activity. J Med Chem, 54, 3732-45 https://doi.org/10.1021/jm200258t
  12. Feng LX, Jing CJ, Tang KL, et al (2011). Clarifying the signal network of salvianolic acid B using proteomic assay and bioinformatic analysis. Proteomics, 11, 1473-85 https://doi.org/10.1002/pmic.201000482
  13. Grinter SZ, Liang Y, Huang SY, et al (2011). An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model, 29, 795-9 https://doi.org/10.1016/j.jmgm.2011.01.002
  14. Gripp KW, Lin AE (2012). Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations. Genet Med, 14, 285-92 https://doi.org/10.1038/gim.0b013e31822dd91f
  15. Hui-fang L, Qing S, Jian Z, et al (2010). Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model, 29, 326-30 https://doi.org/10.1016/j.jmgm.2010.09.004
  16. Husna B, On T, Zhu YZ (2007). Effects of purified Salvia miltiorrhiza extract on cardiac vascular smooth muscle hypoxic cells. J Pharmacol Sci, 104, 202-11 https://doi.org/10.1254/jphs.FP0061344
  17. Kai K, Iwamoto T, Kobayashi T, et al (2013). Ink4a/Arf(-/-) and HRAS(G12V) transform mouse mammary cells into triplenegative breast cancer containing tumorigenic CD49f(-) quiescent cells. Oncogene, ????
  18. Kamper A, Apostolakis J, Rarey M, et al (2006). Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies. J Chem Inf Model, 46, 903-11 https://doi.org/10.1021/ci050467z
  19. Lee CY, Sher HF, Chen HW, et al (2008). Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther, 7, 3527-38 https://doi.org/10.1158/1535-7163.MCT-07-2288
  20. Li H, Xie YH, Yang Q, et al (2012). Cardioprotective effect of paeonol and danshensu combination on isoproterenolinduced myocardial injury in rats. PLoS One, 7, e48872 https://doi.org/10.1371/journal.pone.0048872
  21. Li HY, Li Y, Yan CH, et al (2002). Inhibition of tumor growth by S-3-1, a synthetic intermediate of salvianolic acid A. J Asian Nat Prod Res, 4, 271-80 https://doi.org/10.1080/1028602021000049069
  22. Li XJ, Kong DX and Zhang HY (2010). Chemoinformatics approaches for traditional Chinese medicine research and case application in anticancer drug discovery. Curr Drug Discov Technol, 7, 22-31 https://doi.org/10.2174/157016310791162749
  23. Li YJ, Han D, Xu XS, et al (2012). Protective effects of 3,4-dihydroxyphenyl lactic acid on lipopolysaccharideinduced cerebral microcirculatory disturbance in mice. Clin Hemorheol Microcirc, 50, 267-78
  24. Liu X, Ouyang S, Yu B, et al (2010). PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res, 38, W609-14 https://doi.org/10.1093/nar/gkq300
  25. Membrino A, Cogoi S, Pedersen EB, et al (2011). G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One, 6, e24421 https://doi.org/10.1371/journal.pone.0024421
  26. Omerovic J, Laude AJ, Prior IA (2007). Ras proteins: paradigms for compartmentalised and isoform-specific signalling. Cell Mol Life Sci, 64, 2575-89 https://doi.org/10.1007/s00018-007-7133-8
  27. Pai EF, Krengel U, Petsko GA, et al (1990). Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. EMBO J, 9, 2351-9
  28. Silvius JR (2002). Mechanisms of Ras protein targeting in mammalian cells. J Membr Biol, 190, 83-92 https://doi.org/10.1007/s00232-002-1026-4
  29. Tang Y, Wang M, Chen C, et al (2011). Cardiovascular protection with danshensu in spontaneously hypertensive rats. Biol Pharm Bull, 34, 1596-601 https://doi.org/10.1248/bpb.34.1596
  30. Tao L, Wang S, Zhao Y, et al (2012). Effect of danshensu on redox state and relevant nuclear transcription factors in non-small cell lung cancer A549 cells. Zhongguo Zhong Yao Za Zhi, 37, 1265-8 (in Chinese).
  31. Trott O, Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31, 455-61
  32. Tsai TY, Chang KW, Chen CY (2011). iScreen: world's first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des, 25, 525-31 https://doi.org/10.1007/s10822-011-9438-9
  33. Utomo DH, Widodo N, Rifa'i M (2012). Identifications small molecules inhibitor of p53-mortalin complex for cancer drug using virtual screening. Bioinformation, 8, 426-9 https://doi.org/10.6026/97320630008426
  34. van der Burgt I, Kupsky W, Stassou S, et al (2007). Myopathy caused by HRAS germline mutations: implications for disturbed myogenic differentiation in the presence of constitutive HRas activation. J Med Genet, 44, 459-62 https://doi.org/10.1136/jmg.2007.049270
  35. Wang JC, Chu PY, Chen CM, et al (2012). idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res, 40, W393-9 https://doi.org/10.1093/nar/gks496
  36. Yin Y, Guan Y, Duan J, et al (2013). Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur J Pharmacol, 699, 219-26 https://doi.org/10.1016/j.ejphar.2012.11.005
  37. Zhang J, Matthews CR (1998). Ligand binding is the principal determinant of stability for the p21(H-ras) protein. Biochemistry, 37, 14881-90 https://doi.org/10.1021/bi9811157
  38. Zhang L, Wu T, Chen JM, et al (2012). Danshensu inhibits acetaldehyde-induced proliferation and activation of hepatic stellate cell-T6. Zhong Xi Yi Jie He Xue Bao, 10, 1155-61
  39. Zhang LJ, Chen L, Lu Y, et al (2010). Danshensu has anti-tumor activity in B16F10 melanoma by inhibiting angiogenesis and tumor cell invasion. Eur J Pharmacol, 643, 195-201 https://doi.org/10.1016/j.ejphar.2010.06.045
  40. Zhou L, Zuo Z, Chow MS (2005). Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol, 45, 1345-59 https://doi.org/10.1177/0091270005282630
  41. Zhou X, Chan SW, Tseng HL, et al (2012). Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions. Phytomedicine, 19, 1263-9 https://doi.org/10.1016/j.phymed.2012.08.011

Cited by

  1. A Potential Target of Tanshinone IIA for Acute Promyelocytic Leukemia Revealed by Inverse Docking and Drug Repurposing vol.15, pp.10, 2014, https://doi.org/10.7314/APJCP.2014.15.10.4301
  2. Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study vol.16, pp.9, 2015, https://doi.org/10.7314/APJCP.2015.16.9.3817
  3. using macroporous resins vol.38, pp.16, 2015, https://doi.org/10.1002/jssc.201500416
  4. Identification of neprilysin as a potential target of arteannuin using computational drug repositioning vol.53, pp.2, 2017, https://doi.org/10.1590/s2175-97902017000216087
  5. Danshensu, a major water-soluble component of Salvia miltiorrhiza, enhances the radioresponse for Lewis Lung Carcinoma xenografts in mice vol.13, pp.2, 2016, https://doi.org/10.3892/ol.2016.5508
  6. pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2018.1474170
  7. tests of the tuna dark muscle hydrolysate anti-oxidation effect vol.8, pp.25, 2018, https://doi.org/10.1039/C8RA00889B
  8. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds vol.6, pp.2296-2646, 2018, https://doi.org/10.3389/fchem.2018.00138
  9. Study on the Mechanisms of Active Compounds in Traditional Chinese Medicine for the Treatment of Influenza Virus by Virtual Screening vol.10, pp.2, 2018, https://doi.org/10.1007/s12539-018-0289-0