References
-
B. Alspach and H. Gavlas, Cycle decompositions of
$K_n$ and$K_n-I$ . J. Combin. Theory Ser. B 81(2001), 77-99. https://doi.org/10.1006/jctb.2000.1996 - E. Billington and D. G. Hoffman, Decomposition of complete tripartite graphs into gre-garious 4-cycles. Discrete Math. 261(2003), 87-111. https://doi.org/10.1016/S0012-365X(02)00462-4
- E. Billington, D. G. Hoffman and C. A. Rodger, Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Math. 308 (2008), no. 13, 2844-2853. https://doi.org/10.1016/j.disc.2006.06.047
- N. J. Cavenagh and E. J. Billington, Decompositions of complete multipartite graphs into cycles of even length. Graphs and Combinatorics 16(2000), 49-65. https://doi.org/10.1007/s003730050003
- E. J. Billington, B. R. Smith, and D. G. Hoffman, Equipartite gregarious 6- and 8-cycle systems. Discrete Mathematics 307(2007) 1659-1667. https://doi.org/10.1016/j.disc.2006.09.016
- J. R. Cho, A note on decomposition of complete equipartite graphs into gregarious 6-cycles. Bulletin of the Korean Mathematical Society 44(2007) 709-719. https://doi.org/10.4134/BKMS.2007.44.4.709
- J. R. Cho and R. J. Gould, Decompositions of complete multipartite graphs into gregar-ious 6-cycles using complete differences. Journal of the Korean Mathematical Society 45(2008) 1623-1634. https://doi.org/10.4134/JKMS.2008.45.6.1623
- J. R. Cho, J. M. Park, and Y. Sano, Edge-disjoint decompositions of complete multipar-tite graphs into gregarious long cycles. Computational Geometry and Graphs. Lecture Notes in Computer Science 8296(2012) 57-63.
- E. K. Kim, Y. M. Cho, and J. R. Cho, A difference set method for circulant decompo-sitions of complete partite graphs into gregarious 4-cycles. East Asian Mathematical Journal 26(2010) 655-670.
- J. Liu, A generalization of the Oberwolfach problem and Ct-factorizations of complete equipartite graphs. J. Combin. Designs 9(2000), 42-49.
- M. Sajna, Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Designs 10(2002), 27-78. https://doi.org/10.1002/jcd.1027
-
M. Sajna, On decompositing
$K_n-I$ into cycles of a fixed odd length. Discrete Math. 244(2002), 435-444. https://doi.org/10.1016/S0012-365X(01)00099-1 - B. R. Smith, Some gregarious cycle decompositions of complete equipartite graphs. Electron. J. Combin. 16(2009), no. 1, Research Paper 135, p17.
-
D. Sotteau, Decomposition of
$K(m,n)(K^*_{m,n}$ into cycles (circuits) of length 2k. J. Combin. Theory Ser B. 30(1981), 75-81. https://doi.org/10.1016/0095-8956(81)90093-9
Cited by
- A REMARK ON CIRCULANT DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS BY GREGARIOUS CYCLES vol.33, pp.1, 2014, https://doi.org/10.7858/eamj.2017.007