DOI QR코드

DOI QR Code

EXTRAPOLATED EXPANDED MIXED FINITE ELEMENT APPROXIMATIONS OF SEMILINEAR SOBOLEV EQUATIONS

  • Ohm, Mi Ray (Division of Information Systems Engineering, Dongseo University) ;
  • Lee, Hyun Young (Department of Mathematics, Kyungsung University) ;
  • Shin, Jun Yong (Department of Applied Mathematics, Pukyong National University)
  • Received : 2014.02.25
  • Accepted : 2014.05.16
  • Published : 2014.05.31

Abstract

In this paper, we construct extrapolated expanded mixed finite element approximations to approximate the scalar unknown, its gradient and its flux of semilinear Sobolev equations. To avoid the difficulty of solving the system of nonlinear equations, we use an extrapolated technique in our construction of the approximations. Some numerical examples are used to show the efficiency of our schemes.

Keywords

References

  1. G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech. 24 (1960), no. 5, 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
  2. Y. Cao, J. Yin, and C.Wang, Cauchy problems of semilinear pseudo-parabolic equations, J. Differential Equations 246 (2009), no. 12, 4568-4590. https://doi.org/10.1016/j.jde.2009.03.021
  3. R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems, Mathematics in Sciences and Engineering 127, Academic Press, New York, 1976.
  4. P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. 19 (1968), no. 4, 614-627. https://doi.org/10.1007/BF01594969
  5. Y. Chen and L. Li, Lp error estimates of two-grid schemes of expanded mixed finite element methods, Appl. Math. Comp. 209 (2009), no. 2, 197-205. https://doi.org/10.1016/j.amc.2008.12.033
  6. P. L. Davis, A quasilinear parabolic and a related third order problem, J. Math. Anal. Appl. 49 (1970), 327-335.
  7. R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. 15 (1978), 1125-1150. https://doi.org/10.1137/0715075
  8. H. Guo, A remark on split least-squares mixed element procedures for pseudo-parabolic equations, Appl. Math. Comput. 217 (2011), no. 9, 4682-4690. https://doi.org/10.1016/j.amc.2010.11.021
  9. D. Kim and E-J Park, A posteriori error estimator for expanded mixed hybrid methods, Numer. Methods Partial Differential Equations 23 (2007), no. 2, 330-349. https://doi.org/10.1002/num.20178
  10. D. Shi and H. Wang, Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes, Acta Math. Appl. Sin. Engl. Ser. 25 (2009), no. 2, 335-344. https://doi.org/10.1007/s10255-007-7065-y
  11. D. Shi and Y. Zhang, High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations, Appl. Math. and Comput., 218 (2011), no. 7, 3176-3186. https://doi.org/10.1016/j.amc.2011.08.054
  12. T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 289-303.