DOI QR코드

DOI QR Code

Prognostic Implications for High Expression of MiR-25 in Lung Adenocarcinomas of Female Non-smokers

  • Xu, Fang-Xiu (Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer) ;
  • Su, Yu-Liang (Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer) ;
  • Zhang, Huan (Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer) ;
  • Kong, Jin-Yu (Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer) ;
  • Yu, Herbert (Epidemiology Program, University of Hawaii Cancer Center) ;
  • Qian, Bi-Yun (Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer)
  • Published : 2014.02.01

Abstract

Background: Adenocarcinoma (ADC) is the most common histological type of lung cancer and its proportion is rising, especially in Asian non-smoking women. Recent studies suggest miR-25 may have diverse effects on the pathogenesis of different types of cancer. However, the role of miR-25 in lung cancer is still unknown. The aim of this study was to investigate the potential clinical value of miR-25 in non-smoking women with lung ADC. Patients and Methods: Quantitative RT-PCR was performed to evaluate the expression of miR-25 in 100 lung ADC tumor tissues and matched plasma samples and Pearson correlation tests were used to analyze the relationship between values. Associations of miR-25 expression with clinicopathological features were determined using the Student's t-test. To determine prognostic value, overall survival (OS) was evaluated using the Kaplan-Meier method. Univariate and multivariate analyses were performed using the Cox proportional hazard model. Results: Expression of miR-25 in tissue was found to be associated with lymph node metastasis (P=0.021) and disease stage (P=0.012). Moreover, high miR-25 expression was also associated with poorer overall survival of women with lung ADC (P=0.008). Conclusion: Tissue miR-25 expression may be associated with tumor progression and have prognostic implications in female lung ADC patients.

Keywords

References

  1. Bartel DP(2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  2. Besson A, Dowdy SF, Roberts JM (2008). CDK inhibitors: cell cycle regulators and beyond. Dev Cell, 14, 159-69. https://doi.org/10.1016/j.devcel.2008.01.013
  3. Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-66. https://doi.org/10.1038/nrc1997
  4. Chen Q, Si Q, Xiao S, et al (2013). Prognostic significance of serum miR-17-5p in lung cancer. Med Oncol, 30, 353. https://doi.org/10.1007/s12032-012-0353-2
  5. Ciuffreda L, Di Sanza C, Cesta Incani U, et al (2012). The mitogen-activated protein kinase (MAPK) cascadecontrols phosphatase and tensin homolog (PTEN)expression through multiple mechanisms. J Mol Med, 90, 667-79. https://doi.org/10.1007/s00109-011-0844-1
  6. Ciuffreda LMJ, Milella M (2009). Signaling intermediates (PI3K/PTEN/AKT/mTOR and RAF/MEK/ERK pathways) as therapeutic targets for anti-cancer and anti angiogenesis treatments. Curr Signal Transduct Ther, 4, 130-43. https://doi.org/10.2174/157436209788167466
  7. Dacic S, Kelly L, Shuai Y, Nikiforova MN (2010). miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol, 2 3, 1577-82. https://doi.org/10.1038/modpathol.2010.152
  8. Esposito F, Tornincasa M, Pallante P, et al (2012). Down-regulation of the miR-25 and miR-30d contributes to the development of anaplastic thyroid carcinoma targeting the polycomb protein EZH2. J Clin Endocrinol Metab, 97, 710-8. https://doi.org/10.1210/jc.2011-3068
  9. Franchina T, Amodeo V, Bronte G, et al (2013). Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non small cell lung cancer. J Cell Physiol, 229, 97-9.
  10. Garofalo M, Jeon YJ, Nuovo GJ, et al (2013). MiR-34a/c-Dependent PDGFR-alpha/beta Downregulation Inhibits Tumorigenesis and Enhances TRAIL-Induced Apoptosis in Lung Cancer. PLoS One, 8, 675-81.
  11. Kim B H, Hong S W, Kim A, et al (2013). Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol, 107, 505-10. https://doi.org/10.1002/jso.23271
  12. Lewis BP, Shih IH, Jones-Rhoades MW, et al (2003). Prediction of mammalian microRNA targets.Cell, 115, 787-98. https://doi.org/10.1016/S0092-8674(03)01018-3
  13. Liu N, Chen NY, Cui RX, et al (2012). Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol, 13, 633-41. https://doi.org/10.1016/S1470-2045(12)70102-X
  14. Li Y, Tan W, Neo TW, et al (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci, 100, 1234-42. https://doi.org/10.1111/j.1349-7006.2009.01164.x
  15. Lynch TJ, Bell DW, Sordella R, et al (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 350, 2129-39. https://doi.org/10.1056/NEJMoa040938
  16. Manning BD, Cantley LC (2007). AKT/PKB signaling: navigating downstream. Cell, 129, 1261-74. https://doi.org/10.1016/j.cell.2007.06.009
  17. Metayer C, Wang Z, Kleinerman R A, et al (2002). Cooking oil fumes and risk of lung cancer in women in rural Gansu, China. Lung Cancer, 35, 111-7. https://doi.org/10.1016/S0169-5002(01)00412-3
  18. Min K, Li Y, Liu W, et al (2013 ). miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells through downregulation of SOX4 expression.Int J Mol Med 32, 51-8.
  19. Myong NH (2004). Reduced expression of E-cadherin in human non-small cell lung carcinoma.Cancer Res Treat, 36, 56-61. https://doi.org/10.4143/crt.2004.36.1.56
  20. Pallis AG, Syrigos KN (2013). Lung cancer in never smokers: Disease characteristics and risk factors. Crit Rev Oncol Hematol, 88, 494-503. https://doi.org/10.1016/j.critrevonc.2013.06.011
  21. Pao W, Miller V, Zakowski M, et al (2004). EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Current Issue, 101, 13306-11
  22. Poliseno L, Salmena L, Riccardi L, et al (2010). Identification of the miR-106b-25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its HostGene MCM7 in Transformation. Sci Signal, 3, 1-26.
  23. Qiang L, Zou C, Zou C, et al (2013). MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Letters, 335, 168-74. https://doi.org/10.1016/j.canlet.2013.02.029
  24. Raben D, Helfrich B, Bunn P A, Jr. (2004). Targeted therapies for non-small-cell lung cancer: biology, rationale, and preclinical results from a radiation oncology perspective. Int J Radiat Oncol Biol Phys, 59, 27-38. https://doi.org/10.1016/j.ijrobp.2004.01.054
  25. Rudin C M, Avila-Tang E, Harris C C, et al (2009). Lung cancer in never smokers: molecular profiles and therapeutic implications. Clin Cancer Res, 15, 5646-61. https://doi.org/10.1158/1078-0432.CCR-09-0377
  26. Salmena L, Carracedo A, Pandolfi P P (2008). Tenets of PTEN tumor suppression. Cell, 133, 403-14. https://doi.org/10.1016/j.cell.2008.04.013
  27. Scapoli L, Palmieri A, Lo Muzio L, et al (2010). MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol, 23, 1229-34.
  28. Shen J, Todd N, Zhan H, et al (2011 ). Plasma microRNAs as potential biomarkers for non-small-cell lung cancer.Lab Invest, 91, 579-87. https://doi.org/10.1038/labinvest.2010.194
  29. Siegel R, Naishadham D, Jemal A (2012). Cancer statistics. CA Cancer J Clin, 62, 10-29. https://doi.org/10.3322/caac.20138
  30. Suh SS, Yoo JY, Nuovo GJ, et al (2012). MicroRNAs/TP53 feedback circuitry in glioblastoma multiforme. Proc Natl Acad Sci USA, 109, 5316-21. https://doi.org/10.1073/pnas.1202465109
  31. Thun MJ, Hannan LM, Adams-Campbell LL, et al (2008). Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med, 5, e185. https://doi.org/10.1371/journal.pmed.0050185
  32. Toh C K, Gao F, Lim W T, et al (2006). Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol, 24, 2245-51. https://doi.org/10.1200/JCO.2005.04.8033
  33. Toh CK, Lim WT (2007). Lung cancer in never-smokers. J Clin Pathol, 60, 337-40.
  34. Volinia S, Calin GA, Liu CG, et al (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA, 103, 2257-61. https://doi.org/10.1073/pnas.0510565103
  35. Wakelee HA, Chang ET, Gomez SL, et al (2007). Lung cancer incidence in never smokers. J Clin Oncol, 25, 472-8. https://doi.org/10.1200/JCO.2006.07.2983
  36. Wang Y, Li Z, He C, et al (2010). MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells Mol Dis, 44, 191-7. https://doi.org/10.1016/j.bcmd.2009.12.010
  37. Wu X, Ajani J A, Gu J, et al (2013). MicroRNA expression signatures during malignant progression from Barrett's esophagus to esophageal adenocarcinoma. Cancer Prev Res (Phila), 6, 196-205. https://doi.org/10.1158/1940-6207.CAPR-12-0276
  38. Xu X, Chen Z, Zhao X, et al (2012). MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun, 421, 640-5. https://doi.org/10.1016/j.bbrc.2012.03.048
  39. Yang K, Zhao W, Xiong J, Cao R (2013). Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett, 587, 3153-7. https://doi.org/10.1016/j.febslet.2013.08.010
  40. Yang L, Tan W, Neo T, et al (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci, 100, 1234-42. https://doi.org/10.1111/j.1349-7006.2009.01164.x
  41. Yeh Y, Chuang C, Chao K, Wang L ( 2013). MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1. Int J Cancer, 133, 867-78. https://doi.org/10.1002/ijc.28086
  42. Zhang H, Zuo Z, Lu X, et al (2012). MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer.Oncol Rep, 27, 594-8.
  43. Zhu L, Yan W, Rodriguez-Canales J, et al (2011a). MicroRNA analysis of microdissected normal squamous esophageal epithelium and tumor cells. Am J Cancer Res, 1, 574-84.
  44. Zhu W, Liu X, He J, et al (2011b). Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: A case control study. BMC Cancer, 11, 392-402. https://doi.org/10.1186/1471-2407-11-392

Cited by

  1. MiR-25 promotes ovarian cancer proliferation and motility by targeting LATS2 vol.35, pp.12, 2014, https://doi.org/10.1007/s13277-014-2546-0
  2. SMAD7: a timer of tumor progression targeting TGF-β signaling vol.35, pp.9, 2014, https://doi.org/10.1007/s13277-014-2203-7
  3. Circulating miR-25-3p and miR-451a May Be Potential Biomarkers for the Diagnosis of Papillary Thyroid Carcinoma vol.10, pp.7, 2015, https://doi.org/10.1371/journal.pone.0132403
  4. Two Different Serum MiRNA Signatures Correlate with the Clinical Outcome and Histological Subtype in Pleural Malignant Mesothelioma Patients vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0135331
  5. Inhibition of microRNA-25 by tumor necrosis factor α is critical in the modulation of vascular smooth muscle cell proliferation vol.11, pp.6, 2015, https://doi.org/10.3892/mmr.2015.3329
  6. Construction and analysis of three networks of genes and microRNAs in adenocarcinoma pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3676
  7. miR-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells vol.108, pp.1, 2016, https://doi.org/10.1111/cas.13104
  8. Elevated microRNA-25 inhibits cell apoptosis in lung cancer by targeting RGS3 vol.52, pp.1, 2016, https://doi.org/10.1007/s11626-015-9947-2
  9. RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma vol.7, pp.9, 2016, https://doi.org/10.1038/cddis.2016.252
  10. Evaluation of plasma microRNA levels to predict insensitivity of patients with advanced lung adenocarcinomas to pemetrexed and platinum vol.12, pp.6, 2016, https://doi.org/10.3892/ol.2016.5295
  11. MicroRNA-125a-3p downregulation correlates with tumorigenesis and poor prognosis in patients with non-small cell lung cancer vol.14, pp.4, 2017, https://doi.org/10.3892/ol.2017.6809
  12. Upregulation of microRNA-25-3p inhibits proliferation, migration and invasion of osteosarcoma cells in vitro by directly targeting SOX4 vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7103
  13. Expression of inositol-requiring enzyme 1β is downregulated in colorectal cancer vol.13, pp.3, 2017, https://doi.org/10.3892/ol.2017.5590
  14. MicroRNA in Lung Cancer Metastasis vol.11, pp.2, 2019, https://doi.org/10.3390/cancers11020265