Effects of Herba Cirsii Extracts on Glucose Uptake in OP9 Cells

OP9 세포에서 포도당 흡수능에 대한 대계 추출물의 효과

  • Kim, Mi Seong (Center for Metabolic Function Regulation, Wonkwang University School of Medicine) ;
  • Song, Je Ho (Department of Sports Industry & Welfare, College of Natural Science, Wonkwang University)
  • 김미성 (원광대학교 의과대학 대사기능제어 연구센터) ;
  • 송제호 (원광대학교 자연과학대학 스포츠산업복지학과)
  • Received : 2014.03.25
  • Accepted : 2014.04.17
  • Published : 2014.04.25

Abstract

Although the Herba Cirsii is known to posses beneficial health effects, the anti-diabetic effects and the mechanism of action have not been elucidated. In the present study we have shown that Herba Cirsii Extract (HCE) can stimulate glucose uptake in OP9 adipocytes. Unlike insulin, HCE did not stimulate the Ser473 phosphorylation and activation of Akt. The increasing effects of HCE on glucose uptake were inhibited by PD680509 and compound C pretreatment, which means that the glucose uptake effects by HCE were carried out by extracelluar signal-regulated kinase1/2(ERK1/2) and AMP-activated protein kinase (AMPK) activation. Further studies revealed that HCE stimulated glucose transport occurs through a mechanism involving ERK1/2 activation and AMPK activation.

Keywords

References

  1. 신민교. 임상본초학. 서울, 남산당, pp 495-496, 1986.
  2. 박성규, 이은주, 길재호, 배현수, 홍무창, 신민규. DMN으로 유발된 흰쥐의 간섬유화에 미치는 大薊의 효과. 동의생리병리학회지 18(2):413-418, 2004.
  3. 이정주, 문진영. 大薊약침액의 항산화 효능. 대한경락경혈학회지 22(4):57-65, 2005.
  4. 이정주, 문진영. 간수․중완의 大薊약침이 급성 산화적 간손상에 미치는 효과. 대한경락경혈학회지 20(4):41-52, 2003.
  5. Krentz, A.J. Insulin resistance. BMJ 313: 1385-1389, 1996. https://doi.org/10.1136/bmj.313.7069.1385
  6. Cefalu, W.T. Insulin resistance: celluar and clinical concepts. Exp Biol Med 226: 13-26, 2001.
  7. James, D.E., Brown, R., Navarro, J., Pilch, P.F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature 333: 183-185, 1998.
  8. Cushman, S.W., Wardzala, L.J. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem 255: 4758-4762, 1980.
  9. Marette, A., Richardson, J.M., Ramlal, T., Balon, T.W., Vranic, M., et al. Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am J Physiol 263: C443-452, 1992.
  10. Fujii, N., Jessen, N., Goodyear, L.J. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 291: E867-877, 2006. https://doi.org/10.1152/ajpendo.00207.2006
  11. Wolins, N.E,. Quaynor, B.K., Skinner, J.R., Tzekov, A., Park, C., et al. OP9 mouse stromal cells rapidly differentiate into adipocytes: characterization of a useful new model of adipogenesis. Journal of Lipid Research 47: 450-460, 2006.
  12. Abdin, A.A., Baalash, A.A and Hamooda, H.E. Effects of rosiglitazone and aspirin on experimental model of induced type 2 diabetes in rats: focus on insulin resistance and inflammatory markers. J Diabetes Complications. 24: 168-178, 2010. https://doi.org/10.1016/j.jdiacomp.2009.01.005
  13. Hayden, M.R.. Sowers, J.R. Treating hypertension while protecting the vulnerable islet in the cardiometabolic syndrome. J Am Soc Hypertens. 2: 239-266, 2008. https://doi.org/10.1016/j.jash.2007.12.002
  14. Fukushima, T., Arai, T., Ariga-Nedachi, M., et al. Insulin receptor substrates form high-molecular-mass complexes that modulate their availability to insulin/insulin-like growth factor-I receptor tyrosine kinases. Biochem Biophys Res Commun. 404: 767-773, 2011. https://doi.org/10.1016/j.bbrc.2010.12.045
  15. Zhu, Y., Pereira, R.O., O'Neill, B.T., et al. Cardiac PI3K-Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation. Mol Endocrinol. 27: 172-184, 2013. https://doi.org/10.1210/me.2012-1210
  16. Kramer, H.F., Witczak, C.A., Fujii, N., Jessen, N., Taylor, E.B., et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55: 2067-2076, 2006. https://doi.org/10.2337/db06-0150
  17. Chen, H.C., Bandyopadhyay, G., Sajan, M.P., Kanoh, Y., Standaert, M., et al. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4- carboxamide-1-beta-D- riboside (AICAR)-stimulated glucose transport. J Biol Chem 277: 23554-23562, 2002. https://doi.org/10.1074/jbc.M201152200