DOI QR코드

DOI QR Code

Structural Phase Transition, Electronic Structure, and Magnetic Properties of Sol-gel-prepared Inverse-spinel Nickel-ferrites Thin Films

  • Received : 2014.02.07
  • Accepted : 2014.03.14
  • Published : 2014.06.30

Abstract

X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and vibrating sample magnetometry (VSM) were used to investigate the influence of Ni ions on the structural, electronic, and magnetic properties of nickel-ferrites ($Ni_xFe_{3-x}O_4$). Spinel $Ni_xFe_{3-x}O_4$ ($x{\leq}0.96$) samples were prepared as polycrystalline thin films on $Al_2O_3$ (0001) substrates, using a sol-gel method. XRD patterns of the nickel-ferrites indicate that as the Ni composition increases (x > 0.3), a structural phase transition takes place from cubic to tetragonal lattice. The XPS results imply that the Ni ions in $Ni_xFe_{3-x}O_4$ substitute for the octahedral sites of the spinel lattice, mostly with the ionic valence of +2. The minority-spin d-electrons of the $Ni^{2+}$ ions are mainly distributed below the Fermi level ($E_F$), at around 3 eV; while those of the $Fe^{2+}$ ions are distributed closer to $E_F$ (~1 eV below $E_F$). The magnetic hysteresis curves of the $Ni_xFe_{3-x}O_4$ films measured by VSM show that as x increases, the saturation magnetization ($M_s$) linearly decreases. The decreasing trend is primarily attributable to the decrease in net spin magnetic moment, by the $Ni^{2+}$ ($2{\mu}_B$) substitution for octahedral $Fe^{2+}$ ($4{\mu}_B$) site.

Keywords

References

  1. A. Goldman, Modern Ferrite Technology, 2nd ed., Springer, New York, 2006.
  2. S. B. Ogale, K. Ghosh, R. P. Sharma, R. L. Greene, R. Ramesh and T. Venkatesan, Phys. Rev. B 57, 7823 (1998). https://doi.org/10.1103/PhysRevB.57.7823
  3. K. J. Kim, T. Y. Koh, C. S. Kim, and Y. B. Lee, J. Korean Phys. Soc. 64, 93 (2014). https://doi.org/10.3938/jkps.64.93
  4. Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys. Rev. B 65, 064417 (2002). https://doi.org/10.1103/PhysRevB.65.064417
  5. W. Wang, M. Yu, M. Batzill, J. He, U. Diebold, and J. Tang. Phys. Rev. B 73, 134412 (2006). https://doi.org/10.1103/PhysRevB.73.134412
  6. T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma, and K. Okada, Phys. Rev. B 59, 3195 (1999). https://doi.org/10.1103/PhysRevB.59.3195
  7. K. J. Kim, J. H. Lee, and C. S. Kim, J. Korean Phys. Soc. 61, 1274 (2012). https://doi.org/10.3938/jkps.61.1274
  8. S. Altieri, L. H. Tjeng, A. Tanaka, and G. A. Sawatzky, Phys. Rev. B 61, 13403 (2000). https://doi.org/10.1103/PhysRevB.61.13403
  9. S. Ivanova, E. Zhecheva, R. Stoyanova, D. Nihtianova, S. Wegner, P. Tzvetkova, and S. Simova, J. Phys. Chem. C 115, 25170 (2011). https://doi.org/10.1021/jp208976h
  10. A. K. Singh, T. C. Goel, and R. G. Mendiratta, Solid State Commun. 125, 121 (2003). https://doi.org/10.1016/S0038-1098(02)00626-9
  11. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, and A. C. Basaran, J. Magn. Magn. Mater. 321, 157 (2009). https://doi.org/10.1016/j.jmmm.2008.08.083
  12. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, J. Alloys Compd. 563, 6 (2013). https://doi.org/10.1016/j.jallcom.2013.02.077
  13. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  14. S. S. R. Inbanathan, V. Vaithyanathan, J. A. Chelvane, G. Markandeyulu, and K. K. Bharathi, J. Magn. Magn. Mater. 353, 41 (2014). https://doi.org/10.1016/j.jmmm.2013.10.019
  15. P. D. Thang, G. Rijnders and D. H. A. Blank, J. Magn. Magn. Mater. 310, 2621 (2007). https://doi.org/10.1016/j.jmmm.2006.11.048

Cited by

  1. = 0, 0.05, and 0.075) vol.121, pp.5, 2017, https://doi.org/10.1063/1.4973880