Hair-growth Promoting Effect of Microneedle Roller Therapy

미세침요법의 모발성장효과

  • Lee, Chang Hyun (Department of Anatomy, College of Korean Medicine, Woosuk University) ;
  • Lee, Ji Yeon (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Shin, Hyun Jong (Department of Pathology, College of Korean Medicine, Woosuk University) ;
  • Ha, Ki Tae (Division of Applied Medicine, School of Korean Medicine, Pusan National University) ;
  • Seo, Hyung Sik (Department of Ophthalmology, Otolaryngology and Dermatology, Korean Medicine Hospital of Pusan National University) ;
  • Jeong, Han Sol (Division of Applied Medicine, School of Korean Medicine, Pusan National University)
  • 이창현 (우석대학교 한의과대학 해부학교실) ;
  • 이지연 (부산대학교 한의학전문대학원 응용의학부) ;
  • 신현종 (우석대학교 한의과대학 병리학교실) ;
  • 하기태 (부산대학교 한의학전문대학원 응용의학부) ;
  • 서형식 (부산대학교 한방병원 안이비인후 피부과) ;
  • 정한솔 (부산대학교 한의학전문대학원 응용의학부)
  • Received : 2013.12.18
  • Accepted : 2014.01.07
  • Published : 2014.02.25

Abstract

Micro needle roller therapy has been used for cosmetic purposes, such as reducing skin winkles and improving elasticity of skin. It is claimed that micro needle roller therapy has potentials for connective tissue regeneration by facilitating collagen synthesis. Therefore, there seems to be a possibility that connective tissue regenerating potential of micro needle roller therapy could influence the hair growth cycle. This study, we investigated the hair growth-promoting effects of micro needle roller therapy. C57BL/6 mice were devided into three groups as follows: normal saline-treated, minoxidil-treated, and micro needle roller therapy-received group. Hair growth activity was evaluated by handscopic and microscopic observations. Sections of dorsal skin were stained with hematoxylin and eosin. Expression of BrdU, FGF, and VEGF was detected by immunohistochemical staining. Micro needle roller therapy enhanced the development of hair follicle during anagen. Immunohistochemical analysis revealed that micro neeld roller therapy incresed the expression of BrdU and FGF in the hair follicles of C57BL/6 mice. Furthermore, micro needle roller therapy upregulated mRNA expression of VEGFR-2, FGF-2, EGF - growth factors that play a central role in hair follicle development during anagen. These results suggest that Micro needle roller therapy can potentially be used for the treatment of alopecia.

Keywords

References

  1. Hadshiew, I.M., Foitzik, K., Arck, P.C., R. Paus, R. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J Invest Dermatol 123: 455-457, 2004. https://doi.org/10.1111/j.0022-202X.2004.23237.x
  2. Kaufman, K.D. Androgens and alopecia. Mol Cell Endocrinol 198: 89-95, 2002. https://doi.org/10.1016/S0303-7207(02)00372-6
  3. Soni, V.K. Androgenic alopecia: a counterproductive outcome of the anabolic effect of androgens. Med Hypotheses 73: 420-426, 2009. https://doi.org/10.1016/j.mehy.2009.03.032
  4. Ahmad, W., Faiyaz ul Haque, M., Brancolini, V., Tsou, H.C., ul Haque, S., Lam, H., Aita, V.M., Owen, J., deBlaquiere, M., Frank, J., Cserhalmi-Friedman, P.B., Leask, A., McGrath, J.A., Peacocke, M., Ahmad, M., Ott, J., Christiano, A.M. Alopecia universalis associated with a mutation in the human hairless gene. Science 279: 720-724, 1998. https://doi.org/10.1126/science.279.5351.720
  5. Ellis, J.A., Stebbing, M., Harrap, S.B. Polymorphism of the androgen receptor gene is associated with male pattern baldness. J Invest Dermatol 116: 452-455, 2001. https://doi.org/10.1046/j.1523-1747.2001.01261.x
  6. Peters, E.M., Liotiri, S., Bodo, E., Hagen, E., Biro, T., Arck, P.C., Paus, R. Probing the effects of stress mediators on the human hair follicle: substance P holds central position. Am J Pathol 171: 1872-1886, 2007. https://doi.org/10.2353/ajpath.2007.061206
  7. Gilhar, A., Keren, A., Shemer, A., d'Ovidio, R., Ullmann, Y., Paus, R. Autoimmune Disease Induction in a Healthy Human Organ: A Humanized Mouse Model of Alopecia Areata. J Invest Dermatol 133: 844-847, 2013. https://doi.org/10.1038/jid.2012.365
  8. Price, V.H. Treatment of hair loss. New Engl J Med 341: 964-973, 1999. https://doi.org/10.1056/NEJM199909233411307
  9. Kaufman, K.D., Olsen, E.A., Whiting, D., Savin, R., DeVillez, R., Bergfeld, W., Price, V.H., Van Neste, D., Roberts, J.L., Hordinsky, M., Shapiro, J., Binkowitz, B., Gormley, G.J. and Finasteride Male Pattern Hair Loss Study G. Finasteride in the treatment of men with androgenetic alopecia. J Am Acad Dermatol 39: 578-589, 1998. https://doi.org/10.1016/S0190-9622(98)70007-6
  10. Georgala, S., Befon, A., Maniatopoulou E., and Georgala, C. Topical use of minoxidil in children and systemic side effects. Dermatology 214: 101-102, 2007. https://doi.org/10.1159/000096924
  11. Rogers, N.E. and Avram, M.R. Medical treatments for male and female pattern hair loss. J Am Acad Dermatol 59: 547-566, 2008. https://doi.org/10.1016/j.jaad.2008.07.001
  12. Irwig, M.S. Depressive symptoms and suicidal thoughts among former users of finasteride with persistent sexual side effects. J. Clin. Psychiat. 73: 1220-1223, 2012. https://doi.org/10.4088/JCP.12m07887
  13. Irwig, M.S. Persistent sexual side effects of finasteride: could they be permanent? J Sex Med 9: 2927-2932, 2012. https://doi.org/10.1111/j.1743-6109.2012.02846.x
  14. Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv Drug Delivery Rev 56: 581-587, 2004. https://doi.org/10.1016/j.addr.2003.10.023
  15. Kulkarni, V.S. Microneedle-minimally invasive transdermal delivery technology, in: Kaushik D, Kilfoyle B, Thakur R, Michniak-Kohn BB(Eds.), Handbook of Non-Invasive Drug Delivery Systems. Elservier Inc., MA, USA, 135-164, 2010.
  16. Kuhn, H.G. and Cooper-Kuhn, C.M. Bromodeoxyuridine and the detection of neurogenesis. Curr. Pharm. Biotechno. 8: 127-131, 2007. https://doi.org/10.2174/138920107780906531
  17. Stenn, K.S. and Paus, R. Controls of hair follicle cycling. Physiol Rev 81: 449-494, 2001.
  18. Krause, K. and Foitzik K. Biology of the hair follicle: the basics. Semin Cutan Med Surg 25: 2-10, 2006. https://doi.org/10.1016/j.sder.2006.01.002
  19. Paus, R. and Cotsarelis, G. The biology of hair follicles. New Engl J Med 341: 491-497, 1999. https://doi.org/10.1056/NEJM199908123410706
  20. Crabtree, J.S., Kilbourne, E.J., Peano, B.J., Chippari, S., Kenney, T., McNally, C., Wang, W., Harris, H.A., Winneke,r R.C., Nagpal, S. and Thompson, C.C. A Mouse Model of Androgenetic Alopecia. Endocrinology 151: 2373-2380, 2010. https://doi.org/10.1210/en.2009-1474
  21. Kwack, M.H., Kang B.M., Kim M.K., Kim J.C. and Sung Y.K. Minoxidil activates beta-catenin pathway in human dermal papilla cells: a possible explanation for its anagen prolongation effect. J Dermatol Sci 62: 154-159, 2011. https://doi.org/10.1016/j.jdermsci.2011.01.013
  22. Wilson, C., Walkden, V., Powell, S., Shaw, S., Wilkinson, J. and Dawber, R. Contact dermatitis in reaction to 2% topical minoxidil solution. J Am Acad Dermatol 24: 661-662, 1991. https://doi.org/10.1016/S0190-9622(08)80171-5
  23. Werner, S., Grose, R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83: 835-870, 2003.
  24. Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T. Wound repair and regeneration. Nature 453: 314-321, 2008. https://doi.org/10.1038/nature07039
  25. Ota, Y., Saitoh, Y., Suzuki, S., Ozawa, K., Kawano, M., Imamura, T. Fibroblast growth factor 5 inhibits hair growth by blocking dermal papilla cell activation. Biochem Biophys Res Commun 290: 169-176, 2002. https://doi.org/10.1006/bbrc.2001.6140
  26. Yano, K., Brown, L.F., Detmar, M. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J Clin Invest 107: 409-417, 2001. https://doi.org/10.1172/JCI11317
  27. Li, W., Lu, Z.F., Man, X.Y., Li, C.M., Zhou, J., Chen, J.Q., Yang, X.H., Wu, X.J., Cai, S.Q., Zheng, M. VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep 39: 8687-8694, 2012. https://doi.org/10.1007/s11033-012-1725-6
  28. Li, W., Man, X.Y., Li, C.M., Chen, J.Q., Zhou, J., Cai, S.Q., Lu, Z.F., Zheng, M. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Exp Cell Res 318: 1633-1640, 2012. https://doi.org/10.1016/j.yexcr.2012.05.003