DOI QR코드

DOI QR Code

Investigating deformations of RC beams: experimental and analytical study

  • Received : 2014.02.15
  • Accepted : 2014.04.25
  • Published : 2014.06.25

Abstract

In this paper, a theoretical and experimental study of the sectional behaviour of reinforced concrete beams subjected to short-term loads is carried out. The pure bending behaviour is analysed with moment-curvature diagrams. Thus, the experimental results obtained from 24 beams tested by the authors and reported in literature are compared with theoretical results obtained from a layered model, which combines the material parameters defined in Model Code 2010 with some of the most recognized tensions-tiffening models. Although the tests were carried out for short-term loads, the analysis demonstrates that rheological effects can be important and must be accounted to understand the experimental results. Another important conclusion for the beams tested in this work is that the method proposed by EC-2 tends to underestimate the tension-stiffening effects, leading to inaccuracies in the estimations of deflections. Thus, the actual formulation is analysed and a simple modification is proposed. The idea is the separation of the deflection prediction in two parts: one for short-term loads and other for rheological effects (shrinkage). The results obtained are in fairly good agreement with the experimental results, showing the feasibility of the proposed modification.

Keywords

References

  1. ACI Committee 318 (2011), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute.
  2. Bach, C. and Graf, O. (1917), "Tests on reinforced concrete beams for obtaining moment-curvature relationships (Versuche mit Eisenbetonbalken zur Ermittlung der Beziehung zwischen Formanderungswinkel und Biegungsmoment)", Deutscher Ausschuss fur Eisenbeton (Bulletin $N^{\circ}$ 38). Berlin (in German).
  3. Balazs, G.L., Bisch, P., Borosnyoi, A., Burdet, O., Burns, C., Ceroni, F. and Vrablik, L. (2013), "Design for SLS according to fib model code 2010", Struct. Concrete, 14(2), 99-123. https://doi.org/10.1002/suco.201200060
  4. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI J., 69(April), 212-217.
  5. Bazant, Z.P. and Oh, B.H. (1984), "Deformation of progressively cracking reinforced concrete beams", ACI Journal, 81(May-June), 268-277.
  6. Bischoff, P.H. (2001), "Effects of shrinkage on tension stiffening and cracking in reinforced concrete", Can. J. Civ. Eng., 28, 363-374. https://doi.org/10.1139/l00-117
  7. Bischoff, P.H. (2008), Discussion of "tension stiffening in lightly reinforced concrete slabs" by R. Ian Gilbert, J. Struct. Eng., 133(6), 1259-1260.
  8. Branson, D. (1963), "Instantaneous and time-dependent deflections of simple and continuous reinforced concrete beams HPR Report 7", Alabama Highway Department, Bureau of Public roads.
  9. Branson, D. (1977), "Deformation of concrete structures", McGraw-Hill, New York.
  10. CEB (1990), "Model Code 1990", Comite Europeen du Beton.
  11. CEB-FIP (2009), "Structural Concrete. Textbook on behaviour, design and performance. Second edition", International Federation for Structural Concrete (fib)(Vol. 1, pp. 308), Lausanne, Switzerland.
  12. CEB-FIP (2012), "Model Code 2010. Final draft", International Federation for Structural Concrete (fib)(Vol. 1, pp. 311), Lausanne, Switzerland.
  13. CEB-FIP (2012), "Model Code 2010. Final draft", International Federation for Structural Concrete (fib)(Vol. 2, pp. 331), Lausanne, Switzerland.
  14. Collins, M.P., Mitchel, D., Perry, A. and Vecchio, F.J. (1996), "A general shear design method", ACI Struct. J., 93(1), 36-45.
  15. EC-2 (2004), "Eurocode-2: Design of concrete structures - Part 1-1: General rules and rules for buildings",CEN. Brussels, B.
  16. Ezeberry Parrota, J.I. (2011), "Serviceability theoretical behaviour of RC members under external loads and imposed deformations (Comportamiento teorico de elementos de hormigon estructural en condiciones de servicio, sometidos a acciones exterioresy deformaciones impuestas)", MSc Thesis, Polytechnic University of Madrid, Madrid (in Spanish).
  17. Ghali, A., Favre, R. and Elbadry, M. (2012), "Concrete Structures. Stresses and Deformations: Analysis and Design for Service ability" (4 ed.), Spon Press. London, UK.
  18. Gilbert, R.I. (2001), "Shrinkage, cracking and deflection - the service abillity of concrete structures", Elect. J. Struct. Eng., 1, 15-37.
  19. Gilbert, R.I. (2007), "Tension stiffening in lightly reinforced concrete slabs", J. Struct. Eng., 133(6), 899-903. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(899)
  20. Gilbert, R.I. (2008), Clossure to "Tension stiffening in lightly reinforced concrete slabs", J. Struct. Eng., 133(6), 1264-1265.
  21. Gribniak, V. (2009), "Shrinkage influence of tension-stiffening of concrete structures" (PhD Thesis) Vilnius Gediminas Technical University, Vilnius, Lithuania. (http://www.dart-europe.eu/full.php?id=182160)
  22. Gribniak, V., Kaklauskas, G., Kacianauskas, R. and Kliukas, R. (2012), "Improving efficiency of inverse constitutive analysis of reinforced concrete flexural members", Scientific Res. Essays, 7(8), 923-938.
  23. Gribniak, V., Kaklauskas, G., Torres, L., Daniunas, A., Timinskas, E. and Gudonis, E. (2013a), "Comparative analysis of deformations and tension-stiffening in concrete beams reinforced with GFRP or steel bars and fibers", Composites: Part B, 50, 158-170. https://doi.org/10.1016/j.compositesb.2013.02.003
  24. Gribniak, V., Cervenka, V. and Kaklauskas, G. (2013b), "Deflection prediction of reinforced concrete beams by design codes and computer simulation", Eng. Struct., 56, 2175-2186. https://doi.org/10.1016/j.engstruct.2013.08.045
  25. Hsu, T.T.C. (1996), "Toward a unified nomenclature for reinforced-concrete theory", J. Struct. Eng., 122(3), 275-283. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(275)
  26. Kaklauskas, G. (2001), "Integral flexutal constitutive model for deformational analysis of concrete structures", Monograph. Vilnius: Vilnius Technika.
  27. Kaklauskas, G. and Ghaboussi, J. (2001), "Stress-strain relations for cracked tensile concrete from RC beam tests", J. Struct. Eng., 127(1), 64-73. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64)
  28. Kaklauskas, G. (2004), "Flexural layered deformational model of reinforced concrete members", Mag. Concrete Res., 56(10), 575-584. https://doi.org/10.1680/macr.2004.56.10.575
  29. Kaklauskas, G., Gribniak, V. and Bacinskas, D. (2008), Discussion of "Tension Stiffening in Lightly Reinforced Concrete Slabs" by R. Ian Gilbert, J. Struct. Eng., 113(6), 1261-1262.
  30. Kaklauskas, G., Gribniak, V., Bacinskas, D. and Vainiunas, P. (2009), "Shrinkage influence on tension stiffening in concrete members", Eng. Struct., 31(6), 1305-1312. https://doi.org/10.1016/j.engstruct.2008.10.007
  31. Kaklauskas, G. and Gribniak, V. (2011a), "Eliminating shrinkage effect from moment curvature and tension Stiffening relationships of reinforced concrete members", J. Struct. Eng., 137(12), 1460-1469. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000395
  32. Kaklauskas, G., Gribniak, V. and Girdzius, R. (2011b), "Average stress-average strain tension-stiffening relationships based on provisions of design codes", J. Zhejiang University-Science A, 12(10), 731-736. https://doi.org/10.1631/jzus.A1100029
  33. Kaklauskas, G., Gribniak, V., Salys, D., Sokolov, A. and Meskenas, A. (2011c), "Tension-Stiffening Model Attributed to Tensile Reinforcement for Concrete Flexural Members", Paper presented at the Twelfth East Asia-Pacific Conference on Structural Engineering and Construction.
  34. Perez Caldentey, A., Corres Peiretti, H., Petschke, T.P., Ezeberry Parrota, J.I. and Giraldo Soto, A. (2012), "Serviceability design of columns of long jointless structures", Eng. Struct., 44, 359-371. https://doi.org/10.1016/j.engstruct.2012.06.007
  35. Perez Caldentey, A., Corres Peiretti, H., Peset Iribarren, J. and Giraldo Soto, A. (2013), "Cracking of RC members revisited. Influence of cover, $\Phi$/$\rho$eff and stirrup spacing, An Experimental and Theoretical Study", Struct. Concrete, 14(1), 69-78. https://doi.org/10.1002/suco.201200016
  36. Srinivasa Rao, P. and Subrahmanyam, B.V. (1973), "Trisegmental moment curvature relations for reinforced concrete", ACI J. Proceedings, 70(5), 346-351.
  37. Trost, H. (1967), "Implications of the Superposition Principlein Creep and Relaxation Problems for Concrete and Prestressed Concrete (Auswirkungen des Superpositionsprinzips auf Kriech- und Relaxations probleme bei Beton und Spannbeton)", Beton-und Stahlbetonbau (Berlin-Wilmersdorf), Heft 10, 230-238, 261-269 (in German).
  38. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
  39. Zanuy Sanchez, C. (2010), "Investigating the negative tension stiffening effect of reinforced concrete", Struct. Eng. Mech., 34(2), 189-211. https://doi.org/10.12989/sem.2010.34.2.189

Cited by

  1. A tension stiffening model for analysis of RC flexural members under service load vol.17, pp.1, 2016, https://doi.org/10.12989/cac.2016.17.1.029
  2. Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity vol.19, pp.1, 2017, https://doi.org/10.12989/cac.2017.19.1.001
  3. Effect of GGBFS on time-dependent deflection of RC beams vol.19, pp.1, 2014, https://doi.org/10.12989/cac.2017.19.1.051
  4. Component deformation-based collapse evaluation of RC frame under different collapse criteria vol.21, pp.2, 2014, https://doi.org/10.12989/eas.2021.21.2.113