참고문헌
- Aleem AA (1993). Marine algae of Alexandria, Egypt. Alexandria: Privately published, 1, 135.
- Ardebil MD, Bouzari, Z, Shenas, MH, Zeinalzadeh M, Barat S (2011). Depression and health related quality of life in breast cancer patients. Academic J Cancer Res, 4, 43-6.
- American Cancer Society (2007). Global cancer facts and figures_rev.pdf ,accessed on November 05, 2011.
- Bhattacharya A, Sood P, Citovsky V (2010).The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 11, 705-19.
- Borchardt JR, Wyse DL, Sheaffer CC, et al (2008). Antioxidant and antimicrobial activity of seed from plants of the mississippi river basin. J Med Plants Res, 2, 81-93.
- Chandran SP, Chaudhary M, Rasricha R, et al (2006). Synthesis of gold nanoparticles and silver nanoparticles using alveolar plant extract. Biotechnol Prog, 22, 577. https://doi.org/10.1021/bp0501423
- Chithrani BD, Ghazani AA, Chan WC (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 6, 662-8. https://doi.org/10.1021/nl052396o
- Chithrani BD, Chan WC (2007). Elucidating the mechanism of cellular uptake and removal of protein coated gold nanoparticles of different sizes and shapes. Nano Lett, 7, 1542-50. https://doi.org/10.1021/nl070363y
- Deslandes E, Pondaven P, Auperin T, et al (2000). Preliminary study of the in vitro antiproliferative effect of a hydroethanolic extract from the subtropical seaweed Turbinaria ornata (Turner J. Argadh) on a human non-smallcell bronchopulmonary carcinoma cell line (NSCLC-N6). J Appl Phycol, 12, 257-62. https://doi.org/10.1023/A:1008114831862
- Devi JS, Valentin Bhimba B, Peter DM, et al (2013). Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Ind J Geo-Marine Sci, 42, 125-30.
- El-Kassas H, Attia AA (2014). Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev, 15, 1299-06. https://doi.org/10.7314/APJCP.2014.15.3.1299
- El-Sayed I, Huang X, El-Sayed MA (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett, 239, 129. https://doi.org/10.1016/j.canlet.2005.07.035
- Ghodake G, Lee DS (2011). Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoe, 6, 1-4. https://doi.org/10.1166/jno.2011.1128
- Han G, Ghosh P, Rotello VM (2007a). Multi functional gold nanoparticles for drug delivery. Adv Exp Med Biol, 620, 48-56. https://doi.org/10.1007/978-0-387-76713-0_4
- Han G, Ghosh P, Rotello VM (2007b). Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond), 2, 113-23. https://doi.org/10.2217/17435889.2.1.113
- Hardman RA (2006). Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect, 114, 165-71. https://doi.org/10.1289/ehp.8284
- Jadhav AP, Kim CW, Cha HG, et al (2009). Effect of different surfactants on the size control and optical properties of Y2O3:Eu3+ nanoparticles prepared by coprecipitation method. J Phys Chem C, 113, 13600-4. https://doi.org/10.1021/jp903067j
- Jana NR, Gearheart L, Murphy CJ (2001).Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B, 105, 4065-67.
- Krishnan R, Maru GB (2006). Isolation and analyses of polymeric polyphenol fractions from black tea. Food Chem, 94, 331 https://doi.org/10.1016/j.foodchem.2004.11.039
- Kroemer G (1995). The pharmacology of T cell apoptosis. Adv Immunol, 58, 211-96. https://doi.org/10.1016/S0065-2776(08)60621-5
- Kwon H, Bae S, Kim K, et al (2007). Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem, 104, 196-201. https://doi.org/10.1016/j.foodchem.2006.11.031
- Lee J, Chatterjee DK, Lee MH, et al (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett, (Epub ahead of print).
- Li W, Xie XB, Shi QS, et al (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microb Biotechnol, 85, 1115-22. https://doi.org/10.1007/s00253-009-2159-5
- Link S, El-Sayed MA (2000). Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int Rev Phys Chem, 19, 409-53. https://doi.org/10.1080/01442350050034180
- Loannou YA, Chen FW (1996). Quantitation of DNA Fragmentation in Apoptosis. Nucleic Acids Res, 24, 992-93. https://doi.org/10.1093/nar/24.5.992
- Magrez A, Kasas S, Salicio V, et al (2006).Cellular toxicity of carbon-based nanomaterials. Nano Lett, 6, 1121-5. https://doi.org/10.1021/nl060162e
- Mohanpuria P, Ran KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10, 507-17. https://doi.org/10.1007/s11051-007-9275-x
- Muthuirulappan S, Francis SP (2013). Anti-cancer mechanism and possibility of nano-suspension formulations for a marine algae product fucoxanthin. Asian Pac J Cancer Prev, 14, 2213-6. https://doi.org/10.7314/APJCP.2013.14.4.2213
- Nagumo T, Iizima-Mizui N, Fujihara M, et al (1988). Separation of sulfated, fucose-containing polysaccharides from brown seaweed, Sargassum kjellmaniaum and their heterogeneity and antitumor activity. Kitasato Archives of Experimental Med, 61, 59-67.
- Najar AG, Pashaei-Asl R, Omidi Y, Farajnia S, Nourazarian AR (2013). EGFR antisense oligonucleotides encapsulated with nanoparticles decrease EGFR, MAPK1 and STAT5 expression in a human colon cancer cell line. Asian Pac J Cancer Prev, 14, 495-8. https://doi.org/10.7314/APJCP.2013.14.1.495
- Naqvi SA, Kamat SY, Fernandes L, et al (1980). Screening of some marine plants from the Indian coast for biological activity. Bot Mar, 24, 51-55.
- Niemeyer CM, Ceyhan B (2001). DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Ed Engl, 40, 3685-88. https://doi.org/10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E
- Noda H, Amano H, Arashima K, et al (1989). Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi, 55, 1259-64. https://doi.org/10.2331/suisan.55.1259
- Oberdorster G, Maynard A, Donaldson K, et al (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2, 8-42. https://doi.org/10.1186/1743-8977-2-8
- Paciotti GF, Myer L, Weireich D, et al (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11, 3169-83.
- Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Ed Engl, 40, 3685-88. https://doi.org/10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E
- Pan Y, Neuss S, Leifert A, et al (2007). Size-dependent cytotoxicity of gold nanoparticles. Small, 3, 1941-49. https://doi.org/10.1002/smll.200700378
- Pan Y, Leifert A, Ruau D, et al (2009). Gold Nanoparticles of Diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5, 2067-76. https://doi.org/10.1002/smll.200900466
- Rajathi FAA, Parthiban C, Ganesh Kumar V, et al (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kutzing). Spectrochim Acta Part A Mol Biomol Spectrosc, 99, 166-73. https://doi.org/10.1016/j.saa.2012.08.081
- Rajeshkumar S, Malarkodi1 C, Vanaja M, et al (2013a). Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Der Pharma Chemica, 5, 224-29.
- Rajeshkumar S, Malarkodil C, Gnanajobitha G, et al (2013b). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostr Chem, 3, 44-50. https://doi.org/10.1186/2193-8865-3-44
- Ramakrishna D, Rao P (2011). Nanoparticles: is toxicity a concern? J Int Fed Clin Chem Lab Med, 22, 1-10.
- Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 13, 1617-20. https://doi.org/10.7314/APJCP.2012.13.4.1617
- Siegel R, DeSantis C, Virgo K, et al (2012). Cancer treatment and survivorship statistics. CA Cancer J Clin, 62, 220-41. https://doi.org/10.3322/caac.21149
- Sigee DC, Dean A, Levado E, et al (2002). Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from aeutrophic lake. Eur J Phycol, 37, 19-26. https://doi.org/10.1017/S0967026201003444
- Singaravelu G, Arockiyamari J, Ganesh Kumar V, et al (2007). A novel extracellular biosynthesis of monodisperse gold nanoparticles using marine algae, Sargassum wightii Greville. Colloid Surf B: Biointerf, 57, 97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010
- Singh OP, Nehru RM (2008). Nanotechnology and cancer treatment. Asian J Exp Sci, 22, 45-50.
- Smit AJ (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. J Appl Phycology, 16, 245-62. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef
- Song JY, Kim BS, (2009). Rapid biological synthesis of silver nanoparticles usingplant leaf extracts. Bioprocess Biosyst Eng, 32, 79-84. https://doi.org/10.1007/s00449-008-0224-6
- Srivastava S K, Yamada R, Ogino C, et al (2013). Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett , 8, 70-8. https://doi.org/10.1186/1556-276X-8-70
- Sun Y, Xia Y (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-9. https://doi.org/10.1126/science.1077229
- Venkatesan J, Manivasagan P, Kim S, et al (2014). Marine algae-mediated synthesis of gold nanoparticles using a novel ecklonia cava. Bioprocess Biosyst Eng, 1131-37.
- Vijayaraghavan K, Mahadevan A, Sathishkumar M, et al (2011). Biosorption and subsequent bioreduction of trivalent aurum by a brown marine alga Turbinaria conoides. Chem Eng J, 167, 223-27. https://doi.org/10.1016/j.cej.2010.12.027
- World Health Organization (2007). Cancer control, Knowledge into action: WHO guide for effective programmes. Update ed. USA: WHO Press. Pp: 1-2
- Xie J, Lee JY, Wang DIC, et al (2007). Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in alga solutions. Small, 3, 672-82. https://doi.org/10.1002/smll.200600612
- Yezhelyev MV, Gao X, Xing Y, et al (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol, 7, 657-67. https://doi.org/10.1016/S1470-2045(06)70793-8
- Yin HT, Zhang DG, Wu XL, Huang XE, Chen G (2013). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12. https://doi.org/10.7314/APJCP.2013.14.1.409
- Yoshie Y, Wang W, Hsieh YP, et al (2002). Compositional difference of phenolic compounds between two seaweeds, halimeda spp. J Tok Univer Fisher, 88, 21-4.
- Yuqing M, Sun K, Qiu J, et al (2009). Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J Mater Sci, 44, 754-8. https://doi.org/10.1007/s10853-008-3162-4
피인용 문헌
- Application of Biosynthesized Silver Nanoparticles Against a Cancer Promoter Cyanobacterium, Microcystis aeruginosa vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6773
- Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1683
- Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles vol.6, pp.4, 2016, https://doi.org/10.3390/nano6040078
- Size-Controlled Green Synthesis of Highly Stable and Uniform Small to Ultrasmall Gold Nanoparticles by Controlling Reaction Steps and pH vol.121, pp.16, 2017, https://doi.org/10.1021/acs.jpcc.7b00434
- (Turner) J.Agardh 1848 pp.1548-0046, 2018, https://doi.org/10.1080/02726351.2017.1331286
- Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030754
- and its biological application potential vol.9, pp.3, 2018, https://doi.org/10.1088/2043-6254/aadc4a
- Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures vol.38, pp.8, 2018, https://doi.org/10.1080/07388551.2018.1440525
- pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1489265