DOI QR코드

DOI QR Code

Role of Cytokines in Genesis, Progression and Prognosis of Cervical Cancer

  • 발행 : 2014.05.15

초록

Cytokine research is currently at the forefront in cancer research. Deciphering the functions of these multiple small molecules, discovered within the cell and in intercellular spaces, with their abundance and pleotrophism, was initially a great challenge. Advances in analytical chemistry and molecular biology have made it possible to unravel the pathophysiological functions of these polypeptides/proteins which are called interleukins, chemokines, monokines, lymphokines and growth factors. With more than 5 million women contracting cervical cancer every year this cancer is a major cause of mortality and morbidity the world over, particularly in the developing countries. In more than 95% of cases it is associated with human papilloma virus (HPV) infection which is persistent, particularly in those with a defective immune system. Although preventable, the mere magnitude of prevalence of HPV in the world population makes it a dominating current health hazard. The discovery of cytokine dysregulation in cervical cancer has spurted investigation into the possibility of using them as biomarkers in the early diagnosis of cases at high risk of developing cancer. Their critical role in carcinogenesis and progression of cervical cancer is now being revealed to a great extent. From diagnostics to prognosis, and now with a possible role in therapeutics and prevention of cervical cancer, the cytokines are being evaluated in all anticancer approaches. This review endeavours to capture the essence of the astonishing journey of cytokine research in cervical neoplasia.

키워드

참고문헌

  1. Adam RA, Horowitz IR, Tekmal RR (1999). Serum levels of macrophage colony-stimulating factor-1 in cervical human papillomavirus infection and intraepithelial neoplasia. Am J Obstet Gynecol, 180, 28-32. https://doi.org/10.1016/S0002-9378(99)70144-4
  2. Alcocer-Gonzalez JM, Berumen J, Tamez-Guerra R, et al (2006). In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol, 19, 481-91. https://doi.org/10.1089/vim.2006.19.481
  3. Ali KS, Ali HY, Jubrael JM (2012). Concentration levels of IL-10 and TNF$\alpha$ cytokines in patients with human papilloma virus (HPV) DNA and DNA cervical lesions. J Immunotoxicol, 9, 168-72. https://doi.org/10.3109/1547691X.2011.642419
  4. Asadullah K, Sterry W, Volk HD (2003). Interleukin-10 therapy-review of a new approach. Pharmacol Review, 55, 241-69. https://doi.org/10.1124/pr.55.2.4
  5. Bais AG, Beckmann I, Ewing PC, et al (2007). Cytokine release in HR-HPV (+) women without and with cervical dysplasia (CIN II and III) or carcinoma, compared with HR-HPV (-) controls. Mediat Inflamm, 2007, 1-8.
  6. Baker R, Dauner JG, Rodriguez AC, et al (2011). Increased plasma levels of adipokines and inflammatory markers in older women with persistent HPV infection. Cyto, 53, 282-5. https://doi.org/10.1016/j.cyto.2010.11.014
  7. Balan R, Caruntu I, Amaline C (2013). The immunohistochemical assessment of HPV related adenocarcinoma: pathologic and clinical prognostic significance. Curr Pharm Des, 19, 1430-38.
  8. Barksby HE, Lea SR, Preshaw PM, Taylor JJ (2007). The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol, 149, 217-25. https://doi.org/10.1111/j.1365-2249.2007.03441.x
  9. Basu P, Dutta S, Begum R et al (2013). Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pac J Cancer Prev, 14, 5753-59. https://doi.org/10.7314/APJCP.2013.14.10.5753
  10. Bermudez-Morales VH, Burguete AI, Gutierrez ML, Alcocer Gonzalez JM and Madrid-Marina V (2008). Correlation between IL-10 expression and human papillomavirus infection in cervical cancer. a mechanism for immune response escape. Cancer Invest, 26, 1037-43. https://doi.org/10.1080/07357900802112693
  11. Bermudez-Morales VH, Peralta-Zaragoza O, Alcocer Gonzalez JM, Moreno J, Madrid-Marina V (2011). IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol Med Rep, 4, 369-75.
  12. Bethesda system for reporting cervical/vaginal cytologic diagnosis (2001). Acta Cytol, 37, 115-24.
  13. Bijjiga E, Martino AT (2013). Interleukin 10 (IL-10) regulatory cytokine and its clinical consequences. J Clin Cell Immunol, S1, 007
  14. Boccardo E, Lepique AP, Villa LL (2010). The role of inflammation in HPV carcinogenesis. Carcinogenesis, 31 ,1905-12. https://doi.org/10.1093/carcin/bgq176
  15. Bruchim I, Werner H (2013). Targeting IGF-1 signaling pathways in gynecologic malignancies. Expert Opin Ther Targets, 17, 307-20. https://doi.org/10.1517/14728222.2013.749863
  16. Bustamam A, Ibrahim N, Devi N, et al (2008). The establishment and use of an in vivo animal model for cervical intra-epithelial neoplasia. Int J Cancer Res, 4, 61-70. https://doi.org/10.3923/ijcr.2008.61.70
  17. Castro FA, Haimila K, Sareneva I, et al (2009). Association of HLA-DRB1, interleukin-6 and cyclin D1 polymorphisms with cervical cancer in the Swedish population-A candidate gene approach. Int J Cancer, 125, 1851-8. https://doi.org/10.1002/ijc.24529
  18. Chedrese PJ (2009). Ed: Reproductive Endocrinology- A Molecular Approach.Springer, ISBN 978-0387-88185-0
  19. Clerici M, Shearer GM, Clerici E (1998). Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: time to consider the TH1/TH2 paradigm. J Natl Cancer Inst. 90, 261-3.
  20. Deshpande A, Nolan JP, White PS, et al (2005). TNF-alpha promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J Infect Dis, 191, 969-76. https://doi.org/10.1086/427826
  21. Ding H, Wu YL, Wang YX, Zhu FF (2014). Characterization of the microRNA expression profile of cervical squamous cell carcinoma metastases. Asian Pac J Cancer Prev, 15, 1675-9. https://doi.org/10.7314/APJCP.2014.15.4.1675
  22. Dutcher JP, Wadler S, Wiernik PH (1988). Biologic response modifiers in gynecologic malignancies. Yale J Biol Med, 61, 367-8.
  23. Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M (2011). Comparative anticancer potential of clove (Syzygium aromaticum)--an Indian spice--against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev, 12, 1989-93.
  24. Eckert RL, Agarwal C, Hembree JR, et al (1995). Human cervical cancer. retinoids, interferon and human papillomavirus. Adv Exp Med Biol, 375, 31-44.
  25. Feng Q, Wei H, Morihara J, et al (2012). Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol Oncol, 127, 412-9. https://doi.org/10.1016/j.ygyno.2012.07.098
  26. Fujimoto J, Sakaguchi H, Aoki I, Tamaya T (2000). Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res, 60, 26-32
  27. Gadducci A, Guerrieri ME, Greco C (2013). Tissue biomarkers as prognostic variables of cervical cancer. Crit Rev Oncol Hematol, 86, 104-29. https://doi.org/10.1016/j.critrevonc.2012.09.003
  28. Gangawar R, Mittal B, Mittal RD (2009). Association of interleukin-6-174G>C promoter polymorphism with risk of cervical cancer. Int J Biol Markers, 24, 11-6. https://doi.org/10.1177/172460080902400102
  29. Godse CS, Nabar NS, Raut AA, Joshi JV (2011). Reverse Pharmacology goes global. JAIM, 2, 162-4.
  30. Gelin J, Moldawer LL, Lonnroth C, et al (1988). Appearance of hybridoma growth factor interleukin-6 in the serum of mice bearing a methylcholanthrene induced sarcoma. Biochem Biophys Res Commun, 157, 575-9. https://doi.org/10.1016/S0006-291X(88)80288-2
  31. Gururaj A, Kumar R (2005). Polypeptide growth factors and their receptors. Ch 1: In: Cytokines and Cancer. Ed: Platanias LC. 1-14.
  32. Harald zur Hausen (2000). Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst, 92, 690-8. https://doi.org/10.1093/jnci/92.9.690
  33. Hastak KA, Lubri N, Jakhi SD, et al (1997). Effect of turmeric oil and turmeric oleoresin on cytogenetic damage in patients suffering from oral submucous fibrosis. Cancer Lett, 116, 265-9. https://doi.org/10.1016/S0304-3835(97)00205-X
  34. Hashimoto I, Kodama J, Seki N, et al (2001). Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer, 85, 93-7. https://doi.org/10.1054/bjoc.2001.1846
  35. Hazelbag S, Fleuren GJ, Baelde JJ, et al (2001). Cytokine profile of cervical cancer cells. Gynecol Oncol, 83, 235-43. https://doi.org/10.1006/gyno.2001.6378
  36. Heikkila, Ebrahim S, Lawlor DA (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur J Cancer, 44, 937-45 https://doi.org/10.1016/j.ejca.2008.02.047
  37. Helm CW, Lorenz DJ, Meyer NJ, Rising WW, Wulff JL (2013). Retinoids for preventing the progression of cervical intra-epithelial neoplasia. Cochrane Database Syst Rev, 6, 6:CD003296.
  38. Hess S, Smola H, de Silva U, et al (2000). Loss of IL-6 receptor expression in cervical carcinoma cells inhibits autocrine IL-6 stimulation: abrogation of constitutive monocyte chemoattractant protein-1 production. J Immunol, 165, 1939-48. https://doi.org/10.4049/jimmunol.165.4.1939
  39. Heusinkveld M, Steenwijk PJV, Goedemans R, et al (2011). M2 Macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+Th1 cells. J Immunol, 187, 1157-65. https://doi.org/10.4049/jimmunol.1100889
  40. Hildesheim A, Schiffman MH, Tsukui T, et al (1997). Immune activation in cervical neoplasia: cross-sectional association between plasma soluble interleukin 2 receptor levels and disease. Cancer Epidemiol Biomarkers Prev, 6, 807-13.
  41. Hong JH, Kim MK, Lee IH, et al (2010). Association between serum cytokine profiles and clearance or persistence of high-risk human papillomavirus infection: a prospective study. Int J Gynecol Cancer, 20, 1011-6. https://doi.org/10.1111/IGC.0b013e3181e513e5
  42. Huang Y, Zhang J, Cui ZM, Zhao J, Zheng Y (2013). Expression of the CXCL12/CXCR4 and CXCL16/CXCR6 axes in cervical intraepithelial neoplasia and cervical cancer. Chin J Cancer, 32, 289-96. https://doi.org/10.5732/cjc.012.10063
  43. Janicek MF, Averette HE (2001). Cervical cancer: prevention, diagnosis, and therapeutics. CA Cancer J Clin, 51, 92-114. https://doi.org/10.3322/canjclin.51.2.92
  44. Jayshree RS, Sreenivas A, Tessy M, et al (2009). Cell intrinsic and extrinsic factors in cervical carcinogenesis. Indian J Med Res, 130, 286-95
  45. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM (2001). The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J, 15, 43-58. https://doi.org/10.1096/fj.99-1003rev
  46. Joshi JV, Ghaisas SD, Vaidya RA, et al (2003). Early clinical safety study with turmeric oil (Curcuma longa oil) in human volunteers. J Assoc Phys Ind, 51, 1055-60.
  47. Joshi, JV, Affandi MZ, Amin P, et al (2010). Persistence of cytologic abnormality after treatment of bacterial, parasitic and fungal infections in older women with low grade squamous intraepithelial lesion. Acta Cytol, 54, 242-4. https://doi.org/10.1159/000325023
  48. Joshi JV, Paradkar PH, Jagtap SS, et al (2011). Chemopreventive potential and safety profile of NBFR-03 (supercritical curcuma longa exract) in women with cervical low-grade squammous intraepithelial neoplasia in papanicolaou smears. Asian Pac J Cancer Prev, 12, 3305-11.
  49. Katanyoo K, Chantarasri A, Chongtanakon M, Rongsriyam K, Tantivatana T (2011). Pretreatment levels of serum vascular endothelial growth factor do not correlate with outcome in patients with locally advanced cervical cancer. Asian Pac J Cancer Prev, 12, 699-702.
  50. Kawano M, Hirano T, Matsuda P, et al (1988). Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myelomas. Nature, 332, 83-5 https://doi.org/10.1038/332083a0
  51. Kemp TJ, Hildesheim A, Garcia-Pineres A, et al (2010). Elevated systemic levels of inflammatory cytokines in older women with persistent cervical human papillomavirus infection. Cancer Epidemiol Biomarkers Prev,19, 1954-9. https://doi.org/10.1158/1055-9965.EPI-10-0184
  52. Kim HM, Lim J, Kang JS, et al (2009). Inhibition of human cervical carcinoma growth by cytokine-induced killer cells in nude mouse xenograft model. Int Immunopharmacol, 9, 375-80. https://doi.org/10.1016/j.intimp.2008.12.001
  53. Kim,KY et al. (2000) The effects of interferon on the expression of human papillomavirus oncogenes. J Gen Virol, 81, 695-700. https://doi.org/10.1099/0022-1317-81-3-695
  54. Kirillova I, Chaisson M, Fausto N (1999). Tumor necrosis factor induces DNA replication in hepatic cells through nuclear factor kappaB activation. Cell Growth Differ, 10, 819-28.
  55. Kirma N, Hammes LS,Liu Y, et al (2007). Elevated expression of the oncogene c-fms and its ligand, the macrophage colony-stimulating factor-1, in cervical cancer and the role of transforming growth factor-$\beta$1 in inducing c-fms expression. Cancer Res, 67, 1918-26. https://doi.org/10.1158/0008-5472.CAN-06-1991
  56. Kohno T, Mizukami H, Suzuki M, et al (2003). Interleukin-10.mediated inhibition of angiogenesis and tumor growth in mice bearing VEGF-producing ovarian cancer. Cancer Res, 63, 5091-94.
  57. Lawicki S, Bedkowska GE, Gacuta-Szumarska E, Knapp P, Szmitkowski M (2012). Pretreatment plasma levels and diagnostic utility of hematopoietic cytokines in cervical cancer or cervical intraepithelial neoplasia patients. Folia Histochem Cytobiol, 50, 213-19. https://doi.org/10.5603/FHC.2012.0030
  58. Lazarenko LM, Nikitina OE, Nikitin EV, et al (2014). Development of biomarker panel to predict, prevent and create treatments tailored to the persons with human papillomavirus-induced cervical precancerous lesions. The EPMA Journal, 5, 1-20. https://doi.org/10.1186/1878-5085-5-1
  59. Le Borgne G, Mercier M, Woronoff AS, et al (2013). Quality of life in long-term cervical cancer survivors: a population-based study. Gynecol Oncol, 129, 222-8. https://doi.org/10.1016/j.ygyno.2012.12.033
  60. Lee JS, Kim HS, Jung JJ, et al (2002). Expression of vascular endothelial growth factor in adenocarcinomas of the uterine cervix and its relation to angiogenesis and p53 and c-erbB-2 protein expression. Gynecol Oncol, 85, 469-75. https://doi.org/10.1006/gyno.2002.6648
  61. Li L, Cheng FW, Wang F, et al (2013). The activation of TLR7 regulates the expression of VEGF, TIMP1, MMP2, IL-6, and IL-15 in Hela cells. Mol Cell Biochem. [Epub ahead of print]
  62. Lida K, Nakayama K, Rahman MT (2011). EGFR gene amplification is related to adverse clinical outcomes in cervical squamous cell carcinoma, making the EGFR pathway a novel therapeutic target. Br J Cancer, 105, 420-7. https://doi.org/10.1038/bjc.2011.222
  63. Lin WW, Karin M (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 117, 1175-83. https://doi.org/10.1172/JCI31537
  64. Liu L, Yang X, Chen X, et al (2012). Association between TNF-$\alpha$ polymorphisms and cervical cancer risk: a meta-analysis. Mol Biol Rep, 39, 2683-8. https://doi.org/10.1007/s11033-011-1022-9
  65. Li L, Wang ZX, Wang ZH (2011). Combination of IL-24 and cisplatin inhibits cervical cancer growth in a xenograft nude mice model. Asian Pac J Cancer Prev, 12, 3293-8.
  66. Liu M, Acres B, Balloul JM, et al (2004). Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA, 101, 14567-71. https://doi.org/10.1073/pnas.0404845101
  67. Machado FA, Janssens JP, Michelin MA, Murta EF, (2012). Immune response and immunotherapy in intraepithelial and invasive lesions of the uterine cervix. Clin Exp Obstet Gynecol, 39, 27-31.
  68. Markowska J (2007). Tumor markers in cervical cancer. Ginekol Pol, 78, 715-8.
  69. Mbulaiteye SM, Kemp T, Gage JC, et al (2013). Plasma cytokine levels and human papillomavirus infection at the cervix in rural nigerian women. Cytokine, 64, 146-51. https://doi.org/10.1016/j.cyto.2013.07.028
  70. McIntosh JK, Jablons DM, Mule JJ, et al (1989). In vivo induction of IL-6 by administration of exogenous cytokines and detection of de novo serum levels of IL-6 in tumor-bearing mice. J Immunol, 143, 162-7.
  71. Melnikow J, McGahan C, Sawaya GF et al (2009). Cervical intraepithelial neoplasia outcomes after treatment: long-term follow-up from the british columbia cohort study. J Natl Cancer Inst, b, 721-8. https://doi.org/10.1093/jnci/djp089
  72. Mhatre M, McAndrew T, Carpenter C, et al (2012). Cervical intraepithelial neoplasia is associated with genital tract mucosal inflammation. Sex Transm Dis. 39, 591-7. https://doi.org/10.1097/OLQ.0b013e318255aeef
  73. Micheli DC, Fernandes PC Jr, Cruvinel JC, et al (2012). Circulating cytokines and nitric oxide are involved in the inhibition of neutrophil migration in patients with uterine cervical neoplasia. Clin Med Insights Oncol, 6, 233-42.
  74. Misson DR, Abdalla DR, Borges AM, et al ( 2009). Cervical intraepithelial neoplasia outcomes after treatment: long-term follow-up from the British Columbia cohort study. J Natl Cancer Inst, 101, 721-8. https://doi.org/10.1093/jnci/djp089
  75. Misson DR, Abdalla DR, Borges AM, et al (2011). Cytokine serum levels in patients with cervical intraepithelial neoplasia grade II-III treated with intralesional interferon-$\alpha$ 2b. Tumori, 97, 578-84. https://doi.org/10.1177/030089161109700507
  76. Mitsuhashi A, Suzuka K, Yamazawa K, et al (2005). Serum vascular endothelial growth factor (VEGF) and VEGF-C levels as tumor markers in patients with cervical carcinoma. Cancer, 103, 724-30. https://doi.org/10.1002/cncr.20819
  77. Monk BJ, Willmott LJ, Sumner DA (2010). Anti-angiogenesis agents in metastatic or recurrent cervical cancer. Gynecol Oncol, 116, 181-6. https://doi.org/10.1016/j.ygyno.2009.09.033
  78. Moore KW, de Waal Malefyt R, Coffman RL, and O'Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 19, 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  79. Moore MA, Ariyar Y, Badar F et al (2010). Cancer epidemiology in South Asia-past, present and future. Asian Pac J Cancer Prev, 11, 49-66.
  80. Moschos S,Varanasi S, Kirkwood, JM (2005). Interferons in the treatment of solid tumors. Ch 9. In: platanias LC. Ed. Cancer Treat Res, 126, 207-41. https://doi.org/10.1007/0-387-24361-5_9
  81. Moscicki AB, Shiboski S, Hills NK, et al (2004). Regression of low-grade squamous intra-epithelial lesions in young women. Lancet, 364, 1678-83. https://doi.org/10.1016/S0140-6736(04)17354-6
  82. Mule JJ, McIntosh JK, Jablons DM, Rosenberg SA (1990). Antitumour activity of recombinant interleukin-6 in mice. J Exp Med, 171, 629-36. https://doi.org/10.1084/jem.171.3.629
  83. Murooka TT, Ward SE, Fish EN (2005). Chemokines and cancer. Ch.2. in cytokines and cancer. ed: platanias. Cancer Treat Res, 126, 15-44. https://doi.org/10.1007/0-387-24361-5_2
  84. Olver S, Apte S, Baz A, Kienzle N (2007). "The duplicitous effects of interleukin 4 on tumour immunity: how can the same cytokine improve or impair control of tumour growth?" Tissue Antigens, 69, 293-8. https://doi.org/10.1111/j.1399-0039.2007.00831.x
  85. Pahne ZJ, Schroer N, Walch RB, et al (2013). Cervical cancer cell-derived interleukin-6 impairs CCR7-dependent migration of MMP-9 expressing dendritic cells. Int J Cancer. [Epub ahead of print]
  86. Palasap A, Limpaiboon T, Boonsiri P, et al (2014). Cytotoxic effects of phytophenolics from caesalpinia mimosoides lamk on cervical carcinoma cell lines through an apoptotic pathway. Asian Pac J Cancer Prev, 15, 449-54. https://doi.org/10.7314/APJCP.2014.15.1.449
  87. Pan F, Tian J, Ji CS, et al (2012). Association of TNF-$\alpha$-308 and -238 polymorphisms with risk of cervical cancer: a meta-analysis. Asian Pac J Cancer Prev, 13, 5777-83. https://doi.org/10.7314/APJCP.2012.13.11.5777
  88. Panahi Y, Saadat A, Beiraghdar F, Sahebkar A (2014). Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res. [Epub ahead of print]
  89. Paradkar PH, Agashe S, Joshi JV, et al (2010). Serum cytokine levels and micrometry of pap smears in women with leucorrhoea and with low grade cervical intraepithelial lesions (LGSIL). Asian Pac J Cancer Prev, 11, 989-2.
  90. Pardo-Govea T, Callejas D, Nunez-Troconis J, et al (2005). Gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha) and interleukins 2, 4 and 6 (IL-2, IL-4, IL-6) in cervical-uterine cells of intraepithelial neoplasia: a preliminary report. Invest Clin, 46, 5-13.
  91. Parmar S, Platanias LC (2005). Chapter 3, Interferons. in: platanias LC. ed. Cytokines and Cancer, 45-68.
  92. Patwardhan B, Vaidya ADB (2010). Natural products drug discovery: accelerating the clinical candidate development using reverse pharmacology approaches. Indian J Exp Biol, 48, 220-7.
  93. Peghini BC, Abdalla DR, Barcelos AC, et al (2012). Local cytokine profiles of patients with cervical intraepithelial and invasive neoplasia. Hum Immunol, 73, 920-6. https://doi.org/10.1016/j.humimm.2012.06.003
  94. Platanias LC ed. (2005). Cytokines and cancer. Springer, Chicago.
  95. Ramos MC, Mardegan MC, Peghini BC, et al (2010). Expression of cytokines in cervical stroma in patients with high-grade cervical intraepithelial neoplasia after treatment with intralesional interferon alpha-2b. Eur J Gynaecol Oncol. 31, 522-29.
  96. Roy M, Mukherjee S (2014). Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev, 15, 1403-10. https://doi.org/10.7314/APJCP.2014.15.3.1403
  97. Sankaranarayanan R, Boffetta P (2010). Research on cancer prevention, detection and management in low-and medium-income countries. Ann Oncology, 21, 1935-43. https://doi.org/10.1093/annonc/mdq049
  98. Santin AD, Hermonat PL, Ravaggi A, et al (2000). Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD81 cytotoxic T lymphocytes. J Virol, 74, 4729-37. https://doi.org/10.1128/JVI.74.10.4729-4737.2000
  99. Schafer ZT1, Brugge JS (2007). IL-6 involvement in epithelial cancers. J Clin Invest, 117, 3660-3. https://doi.org/10.1172/JCI34237
  100. Scutter TD, Andrei G, Topalis D, et al (2013). Reduced tumorigenicity and pathogenicity of cervical carcinoma SiHa cells selected for resistance to cidofovir. Mol Cancer, 12, 158-70. https://doi.org/10.1186/1476-4598-12-158
  101. Sharma A, Rajappa M, Saxena A, Sharma M (2007). Cytokine profile in Indian women with cervical intraepithelial neoplasia and cancer cervix. Int J Gynecol Cancer, 17, 879-85. https://doi.org/10.1111/j.1525-1438.2007.00883.x
  102. Sharma M, Satyam A, Abhishek A, et al (2012). Molecular and circulatory expression of insulin growth factors in Indian females with advanced cervical cancer. Asian Pac J Cancer Prev, 13, 6475-9. https://doi.org/10.7314/APJCP.2012.13.12.6475
  103. Shekari M, Kordi-Tamandani DM, MalekZadeh K, et al (2012). Effect of anti-inflammatory (IL-4, IL-10) cytokine genes in relation to risk of cervical carcinoma. Am J Clin Oncol, 35, 514-9. https://doi.org/10.1097/COC.0b013e31822d9c12
  104. Shukla S, Sisodia G, Mahata S, Headau S, Pandey A (2010). Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer, 9, 282-94. https://doi.org/10.1186/1476-4598-9-282
  105. Smola-Hess S, de Silva US, Hadaschik D, Pfister HJ (2001). Soluble interleukin-6 receptor activates the human papillomavirus type 18 long control region in SW756 cervical carcinoma cells in a STAT3-dependent manner. J Gen Virol, 82, 2335-9. https://doi.org/10.1099/0022-1317-82-10-2335
  106. Soonthornthum T, Arias-Pulido H, Joste N, et al (2011). Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol, 22, 2166-78. https://doi.org/10.1093/annonc/mdq723
  107. Souza JM, Matias BF, Rodrigues CM, Murta EF, Michelin MA( 2013). IL-17 and IL-22 serum cytokine levels in patients with squamous intraepithelial lesion and invasive cervical carcinoma. Eur J Gynaecol Oncol, 34, 466-8.
  108. Spitzbart H, Hoyme UB (2000). Immunotherapy of gynaecological high-risk human papilloma virus infection with human leukocyte ultrafiltrate. Infect Dis Obstet Gynecol, 8, 120-3. https://doi.org/10.1155/S1064744900000156
  109. Tabibzadeh SS, Poubouridis D, May LT, Sehgalt PB (1989). Interleukin-6 immunoreactivity in human tumors. Am J Pathol, 135, 427-33.
  110. Takiar R, Nadayil D, Nandakumar A (2010). Projections of number of cancer cases in india (2010) by cancer groups. Asian Pac J Cancer Prev, 11, 1045-9.
  111. Tartour E, Fossiez F, Joyeux I, et al (1999). Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res, 59, 3698-04.
  112. Tavares-Murta BM, de Resende AD, Cunha FQ, Murta EF (2008). Local profile of cytokines and nitric oxide in patients with bacterial vaginosis and cervical intraepithelial neoplasia. Eur J Obstet Gynecol Reprod Biol, 138, 93-9. https://doi.org/10.1016/j.ejogrb.2007.06.015
  113. Tirone NR, Michelin MA, Murta EF (2012). Using cytokines to treat cervical intraepithelial and invasive neoplasia. Recent Pat Anticancer Drug Discov, 5, 165-9.
  114. Tjiong MY, van der Vange N, ten Kate FJ et al (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecol Oncol, 73, 285-91. https://doi.org/10.1006/gyno.1999.5358
  115. Tjiong MY, van der Vange N, ter Schegget JS, et al (2001). Cytokines in cervicovaginal washing fluid from patients with cervical neoplasia. Cytokine, 14, 357-60. https://doi.org/10.1006/cyto.2001.0909
  116. Tsukui T, Hildesheim A, Schiffman MH (1996). Interleukin 2 production in vitro by peripheral lymphocytes in response to human papillomavirus-derived peptides: correlation with cervical pathology. Cancer Res, 56, 3967-74.
  117. Vici P, Mariani L, Pizzuti L, et al (2014). Emerging biological treatments for uterine cervical carcinoma. J Cancer, 5, 86-97 https://doi.org/10.7150/jca.7963
  118. Wang JY, Zhou YQ, Li XX, et al (2012). Associations between three polymorphisms in the interleukin-4 receptor gene and risk of cancer: a meta-analysis. Asian Pac J Cancer Prev, 13, 6227-32 https://doi.org/10.7314/APJCP.2012.13.12.6227
  119. Wei LH, Kuo ML, Chen CA, et al (2001). The anti-apoptotic role of interleukin-6 in human cervical cancer is mediated by up-regulation of Mcl-1 through a PI 3-K/Akt pathway. Oncogene, 20, 5799-09. https://doi.org/10.1038/sj.onc.1204733
  120. Wei LH, Kuo ML, Chen CA, et al (2003). Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3pathway. Oncogene, 22, 1517-27. https://doi.org/10.1038/sj.onc.1206226
  121. Weinberg RA. Multistep tumorigenesis (2007). Chapter 11. in: the biology of cancer. Garland Science, 399-462.
  122. Woodworth CD, Mcmullin E , Iglesias M, Plowmant GD (1995). Interleukin la and tumor necrosis factor a stimulate autocrine amphiregulin expression and proliferation of human papillomavirus-immortalized and carcinoma-derived cervical epithelial cells. Cell Biol, 92, 2840-4.
  123. Wu S, Shang H, Cui L, et al (2013). Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Mol Cell Biochem, 375, 69-79.
  124. Yang YC, Lee ZY, Wu CC, et al (2007). CXCR4 expression is associated with pelvic lymph node metastasis in cervical adenocarcinoma. Int J Gynecol Cancer, 17, 676-86. https://doi.org/10.1111/j.1525-1438.2007.00841.x
  125. Zarogoulidis P, Yarmus L, Zarogoulidis K (2013). Interleukin-6 cytokine: a multifunctional glycoprotein for cancer. Immunome Res, 9, 16635-80.
  126. Zijlmans HJ, Punt S, Fleuren GJ, et al (2012). Role of IL-12p40 in cervical carcinoma. Br J Cancer, 107, 1956-62. https://doi.org/10.1038/bjc.2012.488

피인용 문헌

  1. Serum microRNA-205 as a novel biomarker for cervical cancer patients vol.14, pp.1, 2014, https://doi.org/10.1186/s12935-014-0081-0
  2. Role of CXCR7 and Effects on CXCL12 in SiHa Cells and Upregulation in Cervical Squamous Cell Carcinomas in Uighur Women vol.15, pp.21, 2014, https://doi.org/10.7314/APJCP.2014.15.21.9211
  3. IL-10, IL-15, IL-17, and GMCSF levels in cervical cancer tissue of Tanzanian women infected with HPV16/18 vs. non-HPV16/18 genotypes vol.10, pp.1, 2015, https://doi.org/10.1186/s13027-015-0005-1
  4. An Eighteen Serum Cytokine Signature for Discriminating Glioma from Normal Healthy Individuals vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0137524
  5. 'Drawing' a Molecular Portrait of CIN and Cervical Cancer: a Review of Genome-Wide Molecular Profiling Data vol.16, pp.11, 2015, https://doi.org/10.7314/APJCP.2015.16.11.4477
  6. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis vol.36, pp.3, 2015, https://doi.org/10.1007/s13277-014-2772-5
  7. Elevated Expression of Secreted Autocrine Growth Factor Progranulin Increases Cervical Cancer Growth vol.71, pp.1, 2015, https://doi.org/10.1007/s12013-014-0183-2
  8. Human Leukocyte Antigen Class I and Class II Polymorphisms and Serum Cytokine Profiles in Cervical Cancer vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091478