DOI QR코드

DOI QR Code

Nonlinear Process Modeling Using Hard Partition-based Inference System

Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링

  • Park, Keon-Jun (Deptartment of Information Communication of Wonkwang University) ;
  • Kim, Yong-Kab (Deptartment of Information Communication of Wonkwang University)
  • Received : 2014.11.03
  • Accepted : 2014.12.02
  • Published : 2014.12.30

Abstract

In this paper, we introduce an inference system using hard scatter partition method and model the nonlinear process. To do this, we use the hard scatter partition method that partition the input space in the scatter form with the value of the membership degree of 0 or 1. The proposed method is implemented by C-Means clustering algorithm. and is used for the initial center values by means of binary split. by applying the LBG algorithm to compensate for shortcomings in the sensitive initial center value. Hard-scatter-partitioned input space forms the rules in the rule-based system modeling. The premise parameters of the rules are determined by membership matrix by means of C-Means clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. The data widely used in nonlinear process is used to model the nonlinear process and evaluate the characteristics of nonlinear process.

본 논문에서는 Hard 분산 분할 방법을 이용하는 추론 시스템을 소개하고 비선형 공정을 모델링한다. 이를 위해 입력 공간을 분산 형태로 분할하고 소속 정도가 0 또는 1을 갖는 Hard 분할 방법을 이용한다. 제안한 방법은 C-Means 클러스터링 알고리즘에 의해 구현되며, 초기 중심값에 민감한 단점을 보완하기 위해 LBG 알고리즘을 적용하여 이진 분할에 의한 초기 중심값을 이용한다. Hard 분산 분할된 입력 공간은 규칙 기반의 시스템 모델링에서 규칙을 형성한다. 규칙의 전반부 파라미터는 C-Means 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 규칙의 후반부는 다항식 함수의 형태로 표현되며, 각 규칙의 후반부 파라미터들은 표준 최소자승법에 의해 동정된다. 비선형 공정으로는 널리 이용되는 데이터를 이용하여 비선형 공정을 모델링한 후 특성을 평가한다.

Keywords

References

  1. J.S.R. Jang, E. Mizutani, C.T. Sun, Neuro-Fuzzy and Soft Computing, A Computational Approach to Learning and Machine Intelligence. Prentice Hall, NJ, 1997.
  2. K.-J. Park, J.-K. Kang. Y.-K. Kim, "Fuzzy Inference Systems Based on FCM Clustering Algorithm for Nonlinear Process," KIIECT, 5(4), pp. 224-231, 2012.
  3. C.-S. Bae, H.-Y. Kim, T.-W. Kim, Y.-S. Kang, S.-K. Hwang and S.-K Lee," Implementation of Smart car using Fuzzy Rules," KIIECT, 5(2), pp. 81-88, 2012
  4. R.M. Tong, "Synthesis of fuzzy models for industrial processes," Int. J. Gen. Syst., 4, pp. 143-162, 1978. https://doi.org/10.1080/03081077808960680
  5. W. Pedrycz, "An identification algorithm in fuzzy relational system," Fuzzy Sets Syst., 13, pp. 153-167, 1984. https://doi.org/10.1016/0165-0114(84)90015-0
  6. W. Pedrycz, "Numerical and application aspects of fuzzy relational equations," Fuzzy Sets Syst., 11, pp. 1-18, 1983. https://doi.org/10.1016/S0165-0114(83)80065-7
  7. E. Czogola and W. Pedrycz, "On identification in fuzzy systems and its applications in control problems," Fuzzy Sets Syst., 6, pp. 73-83, 1981. https://doi.org/10.1016/0165-0114(81)90081-6
  8. R. M. Tong, "The evaluation of fuzzy models derived from experimental data," Fuzzy Sets Syst., 13, pp. 1-12, 1980.
  9. C. W. Xu, "Fuzzy system identification," IEEE Proceeding, 126(4), pp. 146-150, 1989.
  10. C. W. Xu and Y. Zailu, "Fuzzy model identification self-learning for dynamic system," IEEE Trans. on Syst. Man, Cybern., SMC-17(4), pp. 683-689, 1987.
  11. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, PlenumPress, NewYork, 1981.
  12. Y. Linde, A. Buzo, R. M. Gray, An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications, 28, 702-710, 1980.
  13. Box and Jenkins, Time Series Analysis, Forcasting and Control, Holden Day, SanFrancisco, CA.