Inhibition of $A{\beta}42$ Fibrillation and Toxicity with ${\beta}$-Asarone

$A{\beta}42$의 섬유화 및 독성에 대한 ${\beta}$-Asarone의 저해 효과

  • Kim, Jia (School of Korean Medicine, Pusan National University) ;
  • Lee, Chul Won (School of Korean Medicine, Pusan National University) ;
  • Lee, Boo Kyun (School of Korean Medicine, Pusan National University) ;
  • Lee, Jang Cheon (School of Korean Medicine, Pusan National University) ;
  • An, Won Gun (School of Korean Medicine, Pusan National University)
  • 김지아 (부산대학교 한의학전문대학원 한의학과) ;
  • 이철원 (부산대학교 한의학전문대학원 한의학과) ;
  • 이부균 (부산대학교 한의학전문대학원 한의학과) ;
  • 이장천 (부산대학교 한의학전문대학원 한의학과) ;
  • 안원근 (부산대학교 한의학전문대학원 한의학과)
  • Received : 2014.03.26
  • Accepted : 2014.06.09
  • Published : 2014.06.25

Abstract

Amyloid-${\beta}$ protein ($A{\beta}$) is a pathological component of Alzheimer's disease (AD) by participating in the senile plaque formation in the patient's brain. Although the exact mechanism of $A{\beta}$ toxicity is not fully elucidated, it is considered to be closely related to its fibrillation process. For prevention of AD, recent studies have suggested various small molecules which inhibit $A{\beta}$ fibrillation. In this report, ${\beta}$-asarone found in acorus plant has been investigated as an anti-amyloid molecule. ${\beta}$-Asarone was demonstrated to prevent in vitro fibrillation of $A{\beta}$ by inducing the oligomer formation that obviously decreased cytotoxicity. Therefore, ${\beta}$-asarone could be suggested as an inhibitory agent of $A{\beta}$ fibrillation and toxicity, which would help us not only to understand underlying principle of amyloidogenesis mechanism but also to develop a controlling strategy toward AD.

Keywords

References

  1. Morrison, J.H., Hof, P.R. Life and death of neurons in the aging brain. Science 278: 412-419, 1997. https://doi.org/10.1126/science.278.5337.412
  2. Fraser, P.E., Lévesque, L., McLachian, D.R. Biochemistry of Alzheimer's disease amyloid plaques. Clin. Biochem. 26:339-349, 1993. https://doi.org/10.1016/0009-9120(93)90110-R
  3. Checler, F. Processing of the b-amyloid precursor protein and its regulation in Alzheimer's disease. J. Neurochem. 65: 1431-1444, 1995.
  4. Davies, P., Maloney, A.J.F. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 308: 1403, 1976.
  5. Stefani, M., Dobson, C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81: 678-699, 2003. https://doi.org/10.1007/s00109-003-0464-5
  6. Chiti, F., Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75: 333-366, 2006. https://doi.org/10.1146/annurev.biochem.75.101304.123901
  7. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., Klein, W.L. Diffusible, nonfibrillar ligands derived from Ab1-42 are potent contral nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95: 6448-6453, 1998. https://doi.org/10.1073/pnas.95.11.6448
  8. Klein, W.L., Krafft, G.A., Finch, C.E. Targeting small Ab oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24: 219-224, 2001. https://doi.org/10.1016/S0166-2236(00)01749-5
  9. Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., Selkoe, D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long term potentiation in vivo. Nature 416: 535-539, 2002. https://doi.org/10.1038/416535a
  10. 國家中醫藥管理局. 中華本草(第8卷). 上海: 上海科學技術出版社, pp 472-478, 1999.
  11. 전국한의과대학 공동교재편찬위원회, 본초학, 영림사, pp 563-564, 2011
  12. Findeis, M.A. Approaches to discovery and characterization of inhibitors of amyloid b-peptide polymerization. Biochim. Biophys. Acta 1502: 76-84, 2000. https://doi.org/10.1016/S0925-4439(00)00034-X
  13. Talaga, P. beta-Amyloid aggregation inhibitors for the treatment of Alzheimer's disease: dream or reality? Mini Rev. Med. Chem. 1: 175-186, 2001. https://doi.org/10.2174/1389557013407098
  14. Selkoe, D.J. Alzheimer's disease: mechanistic understanding predicts novel therapies. Ann. Intern. Med. 140: 627-638, 2004. https://doi.org/10.7326/0003-4819-140-8-200404200-00010
  15. Tjernberg, L.O., Naslund, J., Lindqvist, F., Johanson, J., Karlstrom, A.R., Thyberg, J., Terenius, L., Nordstedt, C. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271: 8545-8548, 1996. https://doi.org/10.1074/jbc.271.15.8545
  16. Permanne, B., Adessi, C., Fraga, S., Frossard, M.J., Saborio, G.P., Soto, C. Are beta-sheet breaker peptides dissolving the therapeutic problem of Alzheimer's disease? J. Neural Transm. Suppl. 62: 293-301, 2002. https://doi.org/10.1007/978-3-7091-6139-5_27
  17. Adessi, C., Frossard, M.-J., Boissard, C., Fraga, S., Bieler, S., Ruckle, T., Vilbois, F., Robinson, S. M., Mutter, M., Banks, W. A., Soto, C. Pharmacological profiles of peptide drug candidates for the treatment of Alzheimer's disease. J. Biol. Chem. 278: 13905-13911, 2003. https://doi.org/10.1074/jbc.M211976200
  18. Feng, B.Y., Toyama, B.H., Wille, H., Colby, D.W., Collins, S. R., May, B.C.H., Prusiner, S.B., Weissman, J., Shoichet, B.K. Small-molecule aggregates inhibit amyloid polymerization. Nat. Chem. Biol. 4: 197-199, 2008. https://doi.org/10.1038/nchembio.65
  19. Necula, M., Kayed, R., Milton, S., Glabe, C.G. Small molecule inhibitors of aggregation indicate that amyloid b oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282: 10311-10324, 2007. https://doi.org/10.1074/jbc.M608207200
  20. Geng, Y., Li, C., Liu, J., Xing, G., Zhou, L., Dong, M., Li, X., Niu, Y. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biological & Pharmaceutical Bulletin. 33: 836-843, 2010. https://doi.org/10.1248/bpb.33.836
  21. Matthew, B.i., Shohei, K. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta 1804: 1405-1412, 2010 https://doi.org/10.1016/j.bbapap.2010.04.001
  22. Mahiuddin, A., Judianne, D., Darryl, A., Takeshi, S., Shivani, A., Saburo, A., James, I.E., William, E.V. & Steven, O.S. Structural conversion of neurotoxic amyloid-$\beta$1-42 oligomers to fibrils. Nature Structural. and Molecular bio. 17: 561-567, 2010. https://doi.org/10.1038/nsmb.1799
  23. Barrow, C.J., Yasuda, A., Kenny, P.T., Zagorski, M.G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J. Mol. Biol. 225: 1075-1093, 1992. https://doi.org/10.1016/0022-2836(92)90106-T
  24. Datki, Z., Juhasz, A., Galfi, M., Soós, K., Papp, R., Zadori, D., Penke, B. Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res Bull. 62: 223-229, 2003. https://doi.org/10.1016/j.brainresbull.2003.09.011