Acknowledgement
Supported by : National Science Council
References
- Bathe, K.J. (1986), Finite Element Procedure in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., USA.
- Bathe, K.J. and Wilson, E.L. (1973), "Stability and accuracy analysis of direct integration methods", Earthq. Eng. Struct. Dyn., 1(3), 283-291.
- Belytschko, T. and Schoeberle, D.F. (1975), "On the unconditional stability of an implicit algorithm for nonlinear structural dynamics", J. Appl. Mech., 42(4), 865-869. https://doi.org/10.1115/1.3423721
- Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland.
- Chang, S.Y. (1997), "Improved numerical dissipation for explicit methods in pseudodynamic tests", Earthq. Eng. Struct. Dyn, 26(9), 917-929. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<917::AID-EQE685>3.0.CO;2-9
-
Chang, S.Y. (2000), "The
$\gamma$ -function pseudodynamic algorithm", J. Earthq. Eng., 4(3), 303-320. - Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Method Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
- Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
-
Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-
$\alpha$ method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803 - Dobbs, M.W. (1974), "Comments on 'stability and accuracy analysis of direct integration methods by Bathe and Wilson", Earthq. Eng. Struct. Dyn., 2, 295-299.
- Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Comput. Method. Appl. Mech. Eng., 2(1), 69-97.
- Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct.Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306
- Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6(1), 99-118. https://doi.org/10.1002/eqe.4290060111
- Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.
- Krieg, R.D. (1973), "Unconditional stability in numerical time integration methods", J. Appl. Mech., 40(2), 417-421. https://doi.org/10.1115/1.3422999
- Lambert, J.D. (1973), Computational Methods in Ordinary Differential Equations, John Wiley, London, UK.
- Lax, P.D. and Richmyer, R.D. (1956), "Survey of the stability of linear difference equations", Commun. Pure Appl. Math., 9(2), 267-293. https://doi.org/10.1002/cpa.3160090206
- Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., ASCE, 85(3), 67-94.
- Simo, J.C., Tarnow, N. and Wong, K.K. (1992), "Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics", Comput. Method. Appl. Mech. Eng., 100(1), 63-116. https://doi.org/10.1016/0045-7825(92)90115-Z
- Gonzalez, O. and Simo, J.C. (1996), "On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry", Comput. Method. Appl. Mech. Eng., 134(3-4), 197-222. https://doi.org/10.1016/0045-7825(96)01009-2
- Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Method. Eng., 15(10), 1562-1566.
- Zhou, X. and Tamma, K.K. (2004), "Design, analysis and synthesis of generalized single step single solve and optimal algorithms for structural dynamics", Int. J. Numer. Method. Eng., 59(5), 597-668. https://doi.org/10.1002/nme.873
- Zhou, X. and Tamma, K.K. (2006), "Algorithms by design with illustrations to solid and structural mechanics/ dynamics", Int. J. Numer. Method. Eng., 66(11), 1841-1870. https://doi.org/10.1002/nme.1577
- Zienkiewicz, O.C. (1977), The Finite Element Method, (3rd Edition), McGraw-Hill Book Co. Ltd., UK.
Cited by
- Arc-length and explicit methods for static analysis of prestressed concrete members vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.017
- Noniterative Integration Algorithms with Controllable Numerical Dissipations for Structural Dynamics pp.1793-6969, 2019, https://doi.org/10.1142/S0219876218501116
- A novel two sub-stepping implicit time integration algorithm for structural dynamics vol.13, pp.3, 2017, https://doi.org/10.12989/eas.2017.13.3.279
- Highly accurate family of time integration method vol.67, pp.6, 2014, https://doi.org/10.12989/sem.2018.67.6.603
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2014, https://doi.org/10.12989/sem.2021.79.4.473