DOI QR코드

DOI QR Code

Numerical dissipation for explicit, unconditionally stable time integration methods

  • Chang, Shuenn-Yih (Department of Civil Engineering, National Taipei University of Technology)
  • Received : 2013.12.29
  • Accepted : 2014.03.24
  • Published : 2014.08.29

Abstract

Although the family methods with unconditional stability and numerical dissipation have been developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally involved for each time step. In this work, a new family method is proposed. It involves no nonlinear iterations in addition to unconditional stability and favorable numerical dissipation, which can be continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of this family method is that it involves no nonlinear iterations for each time step and thus it can save many computationally efforts when compared to the currently available dissipative implicit integration methods.

Keywords

Acknowledgement

Supported by : National Science Council

References

  1. Bathe, K.J. (1986), Finite Element Procedure in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., USA.
  2. Bathe, K.J. and Wilson, E.L. (1973), "Stability and accuracy analysis of direct integration methods", Earthq. Eng. Struct. Dyn., 1(3), 283-291.
  3. Belytschko, T. and Schoeberle, D.F. (1975), "On the unconditional stability of an implicit algorithm for nonlinear structural dynamics", J. Appl. Mech., 42(4), 865-869. https://doi.org/10.1115/1.3423721
  4. Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods for Transient Analysis, Elsevier Science Publishers B.V., North-Holland.
  5. Chang, S.Y. (1997), "Improved numerical dissipation for explicit methods in pseudodynamic tests", Earthq. Eng. Struct. Dyn, 26(9), 917-929. https://doi.org/10.1002/(SICI)1096-9845(199709)26:9<917::AID-EQE685>3.0.CO;2-9
  6. Chang, S.Y. (2000), "The $\gamma$-function pseudodynamic algorithm", J. Earthq. Eng., 4(3), 303-320.
  7. Chang, S.Y. (2002), "Explicit pseudodynamic algorithm with unconditional stability", J. Eng. Mech., ASCE, 128(9), 935-947. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
  8. Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., ASCE, 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
  9. Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Method Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
  10. Chang, S.Y. (2010), "A new family of explicit method for linear structural dynamics", Comput. Struct., 88(11-12), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
  11. Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-$\alpha$ method", J. Appl. Mech., 60(6), 371-375. https://doi.org/10.1115/1.2900803
  12. Dobbs, M.W. (1974), "Comments on 'stability and accuracy analysis of direct integration methods by Bathe and Wilson", Earthq. Eng. Struct. Dyn., 2, 295-299.
  13. Goudreau, G.L. and Taylor, R.L. (1972), "Evaluation of numerical integration methods in elasto-dynamics", Comput. Method. Appl. Mech. Eng., 2(1), 69-97.
  14. Hilber, H.M., Hughes, T.J.R. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct.Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306
  15. Hilber, H.M. and Hughes, T.J.R. (1978), "Collocation, dissipation, and 'overshoot' for time integration schemes in structural dynamics", Earthq. Eng. Struct. Dyn., 6(1), 99-118. https://doi.org/10.1002/eqe.4290060111
  16. Hughes, T.J.R. (1987), The Finite Element Method, Prentice-Hall, Inc., Englewood Cliffs, NJ, USA.
  17. Krieg, R.D. (1973), "Unconditional stability in numerical time integration methods", J. Appl. Mech., 40(2), 417-421. https://doi.org/10.1115/1.3422999
  18. Lambert, J.D. (1973), Computational Methods in Ordinary Differential Equations, John Wiley, London, UK.
  19. Lax, P.D. and Richmyer, R.D. (1956), "Survey of the stability of linear difference equations", Commun. Pure Appl. Math., 9(2), 267-293. https://doi.org/10.1002/cpa.3160090206
  20. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., ASCE, 85(3), 67-94.
  21. Simo, J.C., Tarnow, N. and Wong, K.K. (1992), "Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics", Comput. Method. Appl. Mech. Eng., 100(1), 63-116. https://doi.org/10.1016/0045-7825(92)90115-Z
  22. Gonzalez, O. and Simo, J.C. (1996), "On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry", Comput. Method. Appl. Mech. Eng., 134(3-4), 197-222. https://doi.org/10.1016/0045-7825(96)01009-2
  23. Wood, W.L., Bossak, M. and Zienkiewicz, O.C. (1981), "An alpha modification of Newmark's method", Int. J. Numer. Method. Eng., 15(10), 1562-1566.
  24. Zhou, X. and Tamma, K.K. (2004), "Design, analysis and synthesis of generalized single step single solve and optimal algorithms for structural dynamics", Int. J. Numer. Method. Eng., 59(5), 597-668. https://doi.org/10.1002/nme.873
  25. Zhou, X. and Tamma, K.K. (2006), "Algorithms by design with illustrations to solid and structural mechanics/ dynamics", Int. J. Numer. Method. Eng., 66(11), 1841-1870. https://doi.org/10.1002/nme.1577
  26. Zienkiewicz, O.C. (1977), The Finite Element Method, (3rd Edition), McGraw-Hill Book Co. Ltd., UK.

Cited by

  1. Arc-length and explicit methods for static analysis of prestressed concrete members vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.017
  2. Noniterative Integration Algorithms with Controllable Numerical Dissipations for Structural Dynamics pp.1793-6969, 2019, https://doi.org/10.1142/S0219876218501116
  3. A novel two sub-stepping implicit time integration algorithm for structural dynamics vol.13, pp.3, 2017, https://doi.org/10.12989/eas.2017.13.3.279
  4. Highly accurate family of time integration method vol.67, pp.6, 2014, https://doi.org/10.12989/sem.2018.67.6.603
  5. Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2014, https://doi.org/10.12989/sem.2021.79.4.473