DOI QR코드

DOI QR Code

Effects of Lubiprostone on Pacemaker Activity of Interstitial Cells of Cajal from the Mouse Colon

  • Jiao, Han-Yi (Department of Physiology, College of Medicine, Chosun University) ;
  • Kim, Dong Hyun (Department of Radiology, College of Medicine, Chosun University) ;
  • Ki, Jung Suk (Department of Physiology, College of Medicine, Chosun University) ;
  • Ryu, Kwon Ho (Department of Physiology, College of Medicine, Chosun University) ;
  • Choi, Seok (Department of Physiology, College of Medicine, Chosun University) ;
  • Jun, Jae Yeoul (Department of Physiology, College of Medicine, Chosun University)
  • Received : 2014.05.01
  • Accepted : 2014.07.09
  • Published : 2014.08.30

Abstract

Lubiprostone is a chloride ($Cl^-$) channel activator derived from prostaglandin $E_1$ and used for managing constipation. In addition, lubiprostone affects the activity of gastrointestinal smooth muscles. Interstitial cells of Cajal (ICCs) are pacemaker cells that generate slow-wave activity in smooth muscles. We studied the effects of lubiprostone on the pacemaker potentials of colonic ICCs. We used the whole-cell patch-clamp technique to determine the pacemaker activity in cultured colonic ICCs obtained from mice. Lubiprostone hyperpolarized the membrane and inhibited the generation of pacemaker potentials. Prostanoid $EP_1$, $EP_2$, $EP_3$, and $EP_4$ antagonists (SC-19220, PF-04418948, 6-methoxypyridine-2-boronc acid N-phenyldiethanolamine ester, and GW627368, respectively) did not block the response to lubiprostone. L-NG-nitroarginine methyl ester (L-NAME, an inhibitor of nitric oxide synthase) and 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, an inhibitor of guanylate cyclase) did not block the response to lubiprostone. In addition, tetraethylammonium (TEA, a voltage-dependent potassium [$K^+$] channel blocker) and apamin (a calcium [$Ca^{2+}$]-dependent $K^+$ channel blocker) did not block the response to lubiprostone. However, glibenclamide (an ATP-sensitive $K^+$ channel blocker) blocked the response to lubiprostone. Similar to lubiprostone, pinacidil (an opener of ATP-sensitive $K^+$ channel) hyperpolarized the membrane and inhibited the generation of pacemaker potentials, and these effects were inhibited by glibenclamide. These results suggest that lubiprostone can modulate the pacemaker potentials of colonic ICCs via activation of ATP-sensitive $K^+$ channel through a prostanoid EP receptor-independent mechanism.

Keywords

References

  1. McKeage K, Plosker GL, Siddiqui MA. Lubiprostone. Drugs. 2006;66:873-879. https://doi.org/10.2165/00003495-200666060-00015
  2. Lacy BE, Chey WD. Lubiprostone: chronic constipation and irritable bowel syndrome with constipation. Expert Opin Pharmacother. 2009;10:143-152. https://doi.org/10.1517/14656560802631319
  3. Carter NJ, Scott LJ. Lubiprostone: in constipation-predominant irritable bowel syndrome. Drugs. 2009;69:1229-1237. https://doi.org/10.2165/00003495-200969090-00007
  4. Schey R, Rao SS. Lubiprostone for the treatment of adults with constipation and irritable bowel syndrome. Dig Dis Sci. 2011; 56:1619-1625. https://doi.org/10.1007/s10620-011-1702-2
  5. Crowell MD, Harris LA, DiBaise JK, Olden KW. Activation of type-2 chloride channels: a novel therapeutic target for the treatment of chronic constipation. Curr Opin Investig Drugs. 2007;8:66-70.
  6. Bijvelds MJ, Bot AG, Escher JC, De Jonge HR. Activation of intestinal $Cl^-$ secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 2009;137:976-985. https://doi.org/10.1053/j.gastro.2009.05.037
  7. Fei G, Wang YZ, Liu S, Hu HZ, Wang GD, Qu MH, Wang XY, Xia Y, Sun X, Bohn LM, Cooke HJ, Wood JD. Stimulation of mucosal secretion by lubiprostone (SPI-0211) in guinea pig small intestine and colon. Am J Physiol Gastrointest Liver Physiol. 2009;296:G823-832. https://doi.org/10.1152/ajpgi.90447.2008
  8. Norimatsu Y, Moran AR, MacDonald KD. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem Biophys Res Commun. 2012;426:374-379. https://doi.org/10.1016/j.bbrc.2012.08.097
  9. Lembo AJ, Schneier HA, Shiff SJ, Kurtz CB, MacDougall JE, Jia XD, Shao JZ, Lavins BJ, Currie MG, Fitch DA, Jeglinski BI, Eng P, Fox SM, Johnston JM. Two randomized trials of linaclotide for chronic constipation. N Engl J Med. 2011;365: 527-536. https://doi.org/10.1056/NEJMoa1010863
  10. Ao M, Venkatasubramanian J, Boonkaewwan C, Ganesan N, Syed A, Benya RV, Rao MC. Lubiprostone activates Cl− secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig Dis Sci. 2011;56:339-351. https://doi.org/10.1007/s10620-010-1495-8
  11. Lacy BE, Levy LC. Lubiprostone: a chloride channel activator. J Clin Gastroenterol. 2007;41:345-351. https://doi.org/10.1097/01.mcg.0000225665.68920.df
  12. Cuppoletti J, Malinowska DH, Chakrabarti J, Ueno R. Effects of lubiprostone on human uterine smooth muscle cells. Prostaglandins Other Lipid Mediat. 2008;86:56-60. https://doi.org/10.1016/j.prostaglandins.2008.03.001
  13. Camilleri M, Bharucha AE, Ueno R, Burton D, Thomforde GM, Baxter K, McKinzie S, Zinsmeister AR. Effect of a selective chloride channel activator, lubiprostone, on gastrointestinal transit, gastric sensory, and motor functions in healthy volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290:G942-947. https://doi.org/10.1152/ajpgi.00264.2005
  14. Bassil AK, Borman RA, Jarvie EM, McArthur-Wilson RJ, Thangiah R, Sung EZ, Lee K, Sanger GJ. Activation of prostaglandin EP receptors by lubiprostone in rat and human stomach and colon. Br J Pharmacol. 2008;154:126-135. https://doi.org/10.1038/bjp.2008.84
  15. Chan WW, Mashimo H. Lubiprostone Increases Small Intestinal Smooth Muscle Contractions Through a Prostaglandin E Receptor 1 (EP1)-mediated Pathway. J Neurogastroenterol Motil. 2013;19:312-318. https://doi.org/10.5056/jnm.2013.19.3.312
  16. Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, Huizinga JD. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med. 1998;4:848-851. https://doi.org/10.1038/nm0798-848
  17. Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307-343. https://doi.org/10.1146/annurev.physiol.68.040504.094718
  18. Kim BJ, Kwon YK, Kim E, So I. Effects of histamine on cultured interstitial cells of cajal in murine small intestine. Korean J Physiol Pharmacol. 2013;17:149-156. https://doi.org/10.4196/kjpp.2013.17.2.149
  19. Rumessen JJ, Thuneberg L. Pacemaker cells in the gastrointestinal tract: interstitial cells of Cajal. Scand J Gastroenterol Suppl. 1996;216:82-94.
  20. Komuro T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J Physiol. 2006;576:653-658. https://doi.org/10.1113/jphysiol.2006.116624
  21. Jain D, Moussa K, Tandon M, Culpepper-Morgan J, Proctor DD. Role of interstitial cells of Cajal in motility disorders of the bowel. Am J Gastroenterol. 2003;98:618-624. https://doi.org/10.1111/j.1572-0241.2003.07295.x
  22. Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil. 2008;20 Suppl 1:54-63. https://doi.org/10.1111/j.1365-2982.2008.01109.x
  23. Dey I, Lejeune M, Chadee K. Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol. 2006;149:611-623. https://doi.org/10.1038/sj.bjp.0706923
  24. Mizumori M, Akiba Y, Kaunitz JD. Lubiprostone stimulates duodenal bicarbonate secretion in rats. Dig Dis Sci. 2009;54: 2063-2069. https://doi.org/10.1007/s10620-009-0907-0
  25. Cuthbert AW. Lubiprostone targets prostanoid EP4 receptors in ovine airways. Br J Pharmacol. 2011;162:508-520. https://doi.org/10.1111/j.1476-5381.2010.01058.x
  26. Choi S, Yeum CH, Chang IY, You HJ, Park JS, Jeong HS, So I, Kim KW, Jun JY. Activating of ATP-dependent $K^+$ channels comprised of K(ir) 6.2 and SUR 2B by $PGE_2$ through EP2 receptor in cultured interstitial cells of Cajal from murine small intestine. Cell Physiol Biochem. 2006;18:187-198. https://doi.org/10.1159/000097516
  27. Shahi PK, Choi S, Jeong YJ, Park CG, So I, Jun JY. Basal cGMP regulates the resting pacemaker potential frequency of cultured mouse colonic interstitial cells of Cajal. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:641-648. https://doi.org/10.1007/s00210-014-0976-2
  28. Fujita A, Takeuchi T, Saitoh N, Hanai J, Hata F. Expression of $Ca^{2+}$-activated $K^+$ channels, SK3, in the interstitial cells of Cajal in the gastrointestinal tract. Am J Physiol Cell Physiol. 2001;281:C1727-1733. https://doi.org/10.1152/ajpcell.2001.281.5.C1727
  29. Lyford GL, Farrugia G. Ion channels in gastrointestinal smooth muscle and interstitial cells of Cajal. Curr Opin Pharmacol. 2003;3:583-587. https://doi.org/10.1016/j.coph.2003.06.010
  30. Nakayama S, Ohya S, Liu HN, Watanabe T, Furuzono S, Wang J, Nishizawa Y, Aoyama M, Murase N, Matsubara T, Ito Y, Imaizumi Y, Kajioka S. Sulphonylurea receptors differently modulate ICC pacemaker $Ca^{2+}$ activity and smooth muscle contractility. J Cell Sci. 2005;118:4163-4173. https://doi.org/10.1242/jcs.02540
  31. Park CG, Kim YD, Kim MY, Kim JS, Choi S, Yeum CH, Parajuli SP, Park JS, Jeong HS, So I, Kim KW, Jun JY. Inhibition of pacemaker currents by nitric oxide via activation of ATP-sensitive $K^+$ channels in cultured interstitial cells of Cajal from the mouse small intestine. Naunyn Schmiedebergs Arch Pharmacol. 2007;376:175-184. https://doi.org/10.1007/s00210-007-0187-1
  32. Misiewicz JJ, Connell AM, Pontes FA. Comparison of the effect of meals and prostigmine on the proximal and distal colon in patients with and without diarrhoea. Gut. 1966;7:468-473. https://doi.org/10.1136/gut.7.5.468

Cited by

  1. A Randomized, Double-Blind, Placebo-Controlled Trial to Examine the Effectiveness of Lubiprostone on Constipation Symptoms and Colon Transit Time in Diabetic Patients vol.112, pp.2, 2014, https://doi.org/10.1038/ajg.2016.531
  2. Luminally Acting Agents for Constipation Treatment: A Review Based on Literatures and Patents vol.8, pp.None, 2014, https://doi.org/10.3389/fphar.2017.00418
  3. The Fecal Microbiota Transplantation: A Remarkable Clinical Therapy for Slow Transit Constipation in Future vol.11, pp.None, 2014, https://doi.org/10.3389/fcimb.2021.732474
  4. Inhibition of Na + /H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator‐deficient and F508del mutant mice vol.178, pp.5, 2014, https://doi.org/10.1111/bph.15323