DISJOINT CYCLES WITH PRESCRIBED LENGTHS AND INDEPENDENT EDGES IN GRAPHS

Hong Wang

Abstract

We conjecture that if $k \geq 2$ is an integer and G is a graph of order n with minimum degree at least $(n+2 k) / 2$, then for any k independent edges e_{1}, \ldots, e_{k} in G and for any integer partition $n=n_{1}+$ $\cdots+n_{k}$ with $n_{i} \geq 4(1 \leq i \leq k), G$ has k disjoint cycles C_{1}, \ldots, C_{k} of orders n_{1}, \ldots, n_{k}, respectively, such that C_{i} passes through e_{i} for all $1 \leq i \leq k$. We show that this conjecture is true for the case $k=2$. The minimum degree condition is sharp in general.

1. Introduction

It is well known [9] that if a graph G of order n with minimum degree at least $(n+2) / 2$, then for each edge e, G has a cycle of order l passing through e for each $3 \leq l \leq n$. A set of graphs is said to be disjoint if no two of them have any vertex in common. We ask this question: Given a graph G of order $n=n_{1}+\cdots+n_{k}$ with $n_{i} \geq 3(1 \leq i \leq k)$ and k independent edges e_{1}, \ldots, e_{k} in G, when does G have k disjoint cycles of orders n_{1}, \ldots, n_{k}, respectively, such that C_{i} passes through e_{i} for each $1 \leq i \leq k$? If the orders of the k cycles are not restricted, a similar problem was proposed in [8]. It was conjectured that for each integer $k \geq 2$, there exists $n_{0}(k)$ such that if G is a graph of order $n \geq n_{0}(k)$ and $d(x)+d(y) \geq n+2 k-2$, then for any k independent edges e_{1}, \ldots, e_{k} of G, G has k disjoint cycles C_{1}, \ldots, C_{k} covering all the vertices of G such that C_{i} passes through e_{i} for all $1 \leq i \leq k$. This conjecture was confirmed and completely solved by Egawa, Faudree, Györi, Ishigami, Schelp and Wang in [4]. Here we propose the following conjecture:

Conjecture A. Let $k \geq 2$ be an integer and let G be a graph of order n with minimum degree at least $(n+2 k) / 2$. Then for any k independent edges e_{1}, \ldots, e_{k} in G and for any integer partition $n=n_{1}+\cdots+n_{k}$ with $n_{i} \geq 4(1 \leq$ $i \leq k), G$ has k disjoint cycles C_{1}, \ldots, C_{k} of orders n_{1}, \ldots, n_{k}, respectively, such that C_{i} contains e_{i} for all $1 \leq i \leq k$.

[^0]To see the sharpness in general, we observe $K_{(n-2(k-1)) / 2,(n-2(k-1)) / 2}+$ $K_{2(k-1)}$. This graph has minimum degree $(n+2 k) / 2-1$. Let e_{1}, \ldots, e_{k} be k independent edges such that e_{1}, \ldots, e_{k-1} are taken from the clique $K_{2(k-1)}$. Let $n=n_{1}+\cdots+n_{k}$ be such that n_{k} is odd. Then the graph does not contain k required cycles.

In Conjecture A, the condition $n_{i} \geq 4(1 \leq i \leq k)$ is necessary in general. This can be demonstrated in the following example with $n_{i}=3(1 \leq i \leq k)$. Choose positive integers a, b and k such that $a \geq k / 2+1, b \geq 2, k>a+b$ and $k-$ b is even. Let K be the complete graph on $V=\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}, z_{1}, \ldots, z_{k}\right\}$. Let (V, E) be a graph of order $3 k$ with $V=\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}, z_{1}, \ldots, z_{k}\right\}$ such that $E=E(K)-\left\{y_{i} z_{j} \mid a+1 \leq i \leq k, 1 \leq j \leq(k-b) / 2\right\}-\left\{x_{i} z_{j} \mid a+1 \leq\right.$ $i \leq k,(k-b) / 2+1 \leq j \leq k-b\}$. This graph does not contain k disjoint triangles containing k independent edges $x_{i} y_{i}(1 \leq i \leq k)$ since $k-b>a$ and a triangle containing a vertex of $\left\{z_{1}, \ldots, z_{k-b}\right\}$ and an edge of $\left\{x_{i} y_{i} \mid 1 \leq\right.$ $i \leq k\}$ must contain an edge of $\left\{x_{i} y_{i} \mid 1 \leq i \leq a\right\}$. Its minimum degree is $\min \{2 k-1+(k+b) / 2,2 k-1+a\} \geq 5 k / 2$.

Magnant and Ozeki [7] discussed similar questions about disjoint cycles with approximately prescribed lengths and fixed edges where the condition on $\sigma_{2}(G)$ is used.

If the k disjoint cycles are not required to pass through given edges, we have El-Zahar's conjecture [5]. The conjecture says that if G is a graph of order $n=n_{1}+\cdots+n_{k}$ with $n_{i} \geq 3(1 \leq i \leq k)$ and minimum degree at least $\left\lceil n_{1} / 2\right\rceil+\cdots+\left\lceil n_{k} / 2\right\rceil$, then G contains k disjoint cycles of order n_{1}, \ldots, n_{k}, respectively. It was confirmed for the case $k=2$ in [5]. Abbasi [1] announced a solution of this conjecture for large n using regularity lemma.

In this paper, we prove Conjecture A for the case $k=2$:
Theorem B. Let G be a graph of order n with minimum degree at least $(n+$ 4)/2. Then for any two independent edges e_{1} and e_{2} in G and for any integer partition $n=n_{1}+n_{2}$ with $n_{1} \geq 3$ and $n_{2} \geq 3, G$ has two disjoint cycles C_{1} and C_{2} of orders n_{1} and n_{2}, respectively, such that $e_{1} \in E\left(C_{1}\right)$ and $e_{2} \in E\left(C_{2}\right)$.

We shall use terminology and notation from [2] except as indicated. Let $G=$ (V, E) be a graph. Let $x \in V(G)$. Let H be a subset of $V(G)$ or a subgraph of G. We define $N(x, H)=\{u \in N(x) \mid u$ belongs to $H\}$. Let $d(x, H)=|N(x, H)|$. If X is a subset of $V(G)$ or a subgraph of G, define $N(X, H)=\cup_{x} N(x, H)$ and $d(X, H)=\sum_{x} d(x, H)$, where x runs over X. Clearly, if X and H do not have any common vertex, then $d(X, H)$ is the number of edges of G between X and H. We also use $[H]$ to denote the induced subgraph of G by the vertices in H. For $x, y \in V(G)$, define $I(x y, H)=N(x, H) \cap N(y, H)$ and let $i(x y, H)=|I(x y, H)|$. We use $e(G)$ to denote $|E(G)|$. The order of G is denoted by $|G|$.

A path from u to v is called a $u-v$ path. If P is a path of G and v is an endvertex of P, we use $\alpha(P, v)$ to denote the order of the longest $u-v$ subpath of P with $u v \in E(G)$. Clearly, if $\alpha(P, v) \geq 3$, then $P+u v$ has a cycle of order
$\alpha(P, v)$. Let $w \in V(G)(e \in E(G)$, respectively $)$. Let $P=w_{1} w_{2} \cdots w_{t}$ be a longest path starting at $w=w_{1}\left(e=w_{1} w_{2}\right.$, respectively). We say that P is an optimal path at $w\left(e\right.$, respectively) in G if $\alpha\left(P^{\prime}, x_{t}\right) \leq \alpha\left(P, w_{t}\right)$ for any longest path $P^{\prime}=x_{1} x_{2} \cdots x_{t}$ starting at $w=x_{1}\left(e=x_{1} x_{2}\right.$, respectively) in G. If $e \in E(P)$, we define $\sigma(P, e)=\min \left\{\left|E\left(P_{1}\right)\right|,\left|E\left(P_{2}\right)\right|\right\}$, where P_{1} and P_{2} are the two components of $P-e$. Thus if $\sigma(P, e)=0$, then e is an end edge of P. For an edge $e \in E(G)$, an e-path or e-cycle is a path or a cycle that passes through e. If P is a $u-v$ path, we define $d^{*}(P, H)=d(u v, H)$.

A cycle C of G is called an end-cycle at $u \in V(C)$ if $N(x, G) \subseteq V(C)$ and $[C]$ has a $u-x$ hamiltonian path for each $x \in V(C-u)$.

If $C=x_{1} \cdots x_{t} x_{1}$ is a cycle of G, we assume an orientation of C is given by default such that x_{2} is the successor of x_{1}. Then $C\left[x_{i}, x_{j}\right]$ is the $x_{i}-x_{j}$ path on C along the orientation of C and $C^{-}\left[x_{i}, x_{j}\right]$ is the $x_{i}-x_{j}$ path on C in the direction against the orientation of C. Define $C\left[x_{i}, x_{j}\right)=C\left[x_{i}, x_{j}\right]-x_{j}$ and $C\left(x_{i}, x_{j}\right]=C\left[x_{i}, x_{j}\right]-x_{i}$. The predecessor and successor of x_{i} on C are denoted by x_{i}^{-}and x_{i}^{+}. We will use similar definitions for a path.

Let $P=x_{1} \cdots x_{t}$ be a path of G. If $\left\{x_{1} x_{i+1}, x_{t} x_{i}\right\} \subseteq E$ with $1 \leq i \leq t-1$, we say that $x_{i} x_{i+1}$ is an accessible edge of P. Let $C=u_{1} u_{2} \cdots u_{m} u_{1}$ be a cycle of G. Let u_{i} and u_{j} be two distinct vertices of C. For each $e \in E(C)$, if e is an accessible edge of either $C\left[u_{i}, u_{j}\right]$ or $C\left[u_{j}, u_{i}\right]$, then we say that e is an accessible edge of C with respect to $\left\{u_{i}, u_{j}\right\}$.

2. Proof of Theorem B

In this section, we list Lemmas 2.1-2.7 and use them to prove the theorem. The proofs of these lemmas are in Section 4. Let $G=(V, E)$ be a graph order n with $\delta(G) \geq(n+4) / 2$. Suppose, for a contradiction, that theorem fails for G. Let G be a counter example with n minimal. Let $n=n_{1}+n_{2}$ be an integer partition with $n_{1} \geq 3$ and $n_{2} \geq 3$ and let e_{1} and e_{2} be two independent edges such that G does not contain two disjoint cycles of orders n_{1} and n_{2} passing through e_{1} and e_{2}, respectively. For each $X \subseteq V$ with $|X| \leq 3, \delta(G-X) \geq(n+4) / 2-|X| \geq((n-|X|)+1) / 2$ and by Lemma 3.4, $G-X$ is hamiltonian connected. If $n_{1}=3$ or $n_{2}=3$, say $n_{1}=3$ and $e_{1}=x y$, then x and y have a common neighbor z that is not an endverex of e_{2} because $\delta(G) \geq(n+4) / 2$. Since $G-\{x, y, z\}$ is hamiltonian connected, it has a hamiltonian cycle passing through e_{2}. Thus the theorem holds if $n_{1}=3$ or $n_{2}=3$. Therefore $n_{1} \geq 4, n_{2} \geq 4$ and so $n \geq 8$.

For the sake of convenience, for each $i \in\{1,2\}$, let \mathcal{P}_{i} be the set of all the subgraphs of G which have e_{i}-hamiltonian paths and \mathcal{H}_{i} the set of all the subgraphs of G which have e_{i}-hamiltonian cycles. Furthermore, for each $i \in\{1,2\}$ and $J \in \mathcal{P}_{i}$, let $\mathcal{P}_{i}(J)$ denote the set of all the e_{i}-hamiltonian paths of J and let $\mathcal{P}_{i}^{*}(J)$ denote the subset of $\mathcal{P}_{i}(J)$ such that a path $P \in \mathcal{P}_{i}(J)$ belongs to $\mathcal{P}_{i}^{*}(J)$ if and only if $\sigma\left(P, e_{i}\right) \geq 1$.

For each $i \in\{1,2\}$ and $J \in \mathcal{P}_{i}$, let $S_{i}(J)$ be the set of all the vertices x of $J-V\left(e_{i}\right)$ such that x is an end vertex of some $P \in \mathcal{P}_{i}(J)$ and let $\delta_{i}(J)=$ $\min \left\{d(x, J) \mid x \in S_{i}(J)\right\}$.

As $\delta(G) \geq(n+4) / 2, G$ has a hamiltonian cycle containing both e_{1} and e_{2}. Thus G has two disjoint subgraphs G_{1} and G_{2} such that for each $i \in\{1,2\}$, $\left|G_{i}\right|=n_{i}$ and $G_{i} \in \mathcal{P}_{i}$. We choose G_{1} and G_{2} such that

$$
\begin{equation*}
e\left(G_{1}\right)+e\left(G_{2}\right) \text { is maximum. } \tag{1}
\end{equation*}
$$

Let $P_{1}=x_{1} \cdots x_{n_{1}}$ and $P_{2}=y_{1} \cdots y_{n_{2}}$ be two paths such that, $P_{1} \in \mathcal{P}_{1}\left(G_{1}\right)$, $P_{2} \in \mathcal{P}_{2}\left(G_{2}\right), x_{1} \in S_{1}\left(G_{1}\right), y_{1} \in S_{2}\left(G_{2}\right), d\left(x_{1}, G_{1}\right)=\delta_{1}\left(G_{1}\right)$ and $d\left(y_{1}, G_{2}\right)=$ $\delta_{2}\left(G_{2}\right)$. For any $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$, we use $\xi(x, y)$ to denote $d\left(x, G_{2}\right)-$ $d\left(x, G_{1}\right)+d\left(y, G_{1}\right)-d\left(y, G_{2}\right)-2 d(x, y)$. Thus $e\left(G_{1}-x+y\right)+e\left(G_{2}-y+x\right)=$ $e\left(G_{1}\right)+e\left(G_{2}\right)+\xi(x, y)$. By (1), we readily obtain the following Property A and Property B. The first one is evident.
Property A. Let $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. If $G_{1}-x+y \in \mathcal{P}_{1}$ and $G_{2}-y+x \in \mathcal{P}_{2}$, then $\xi(x, y) \leq 0$.
Property B. Either $\mathcal{P}_{1}^{*}\left(G_{1}\right) \neq \emptyset$ or $\mathcal{P}_{2}^{*}\left(G_{2}\right) \neq \emptyset$.
Proof. Say $\mathcal{P}_{1}^{*}\left(G_{1}\right)=\emptyset$ and $\mathcal{P}_{2}^{*}\left(G_{2}\right)=\emptyset$. Then $e_{1}=x_{n_{1}-1} x_{n_{1}}$ and $N\left(x_{n_{1}}, G_{1}\right)$ $\subseteq\left\{x_{n_{1}-1}, x_{n_{1}-2}\right\}$. Thus $n_{2} \geq d\left(x_{n_{1}}, G_{2}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-2=\left(n_{1}+\right.$ $\left.n_{2}\right) / 2$ and so $n_{2} \geq n_{1}$. Similarly, $n_{1} \geq\left(n_{1}+n_{2}\right) / 2$. It follows that $n_{1}=$ $n_{2}, N\left(x_{n_{1}}, G_{1}\right)=\left\{x_{n_{1}-2}, x_{n_{1}-1}\right\}$ and $N\left(y_{n_{2}}, G_{2}\right)=\left\{y_{n_{2}-2}, y_{n_{2}-1}\right\}$. Thus $N\left(e_{1}, G_{1}\right)=\left\{x_{n_{1}-2}, x_{n_{1}-1}, x_{n_{1}}\right\}$ and $N\left(e_{2}, G_{2}\right)=\left\{y_{n_{2}-2}, y_{n_{2}-1}, y_{n_{2}}\right\}$. Consequently, $G_{1}-V\left(e_{1}\right)+V\left(e_{2}\right) \in \mathcal{P}_{2}, G_{2}-V\left(e_{2}\right)+V\left(e_{1}\right) \in \mathcal{P}_{1}, e\left(G_{1}-V\left(e_{1}\right)+\right.$ $\left.V\left(e_{2}\right)\right)+e\left(G_{2}-V\left(e_{2}\right)+V\left(e_{1}\right)\right)>e\left(G_{1}\right)+e\left(G_{2}\right)$. This contradicts (1).

To reach a contradiction, we will investigate the structure of G_{1} and G_{2} which lead us to construct a sequence $\left(G_{1}, G_{2}\right),\left(G_{3}, G_{4}\right), \ldots,\left(G_{2 k-1}, G_{2 k}\right)$ of pairs of disjoint subgraphs of G. This will be accomplished by seven lemmas. Lemmas 2.1-2.6 are the steps to Lemma 2.7 and we use Lemma 2.7 to show that the sequence yields a contradiction.
Lemma 2.1. Either $d\left(x_{1}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$ or $d\left(y_{1}, G_{2}\right) \leq\left(n_{2}+1\right) / 2$.
Lemma 2.2. Either $d\left(x_{1}, G_{1}\right) \geq\left(n_{1}+2\right) / 2$ or $d\left(y_{1}, G_{2}\right) \geq\left(n_{2}+2\right) / 2$.
By Lemma 2.1 and Lemma 2.2, we may assume without loss of generality that $d\left(x_{1}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$ and $d\left(y_{1}, G_{2}\right) \geq\left(n_{2}+2\right) / 2$, i.e., $\delta_{1}\left(G_{1}\right) \leq\left(n_{1}+1\right) / 2$ and $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$. Clearly, $d\left(x_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$.
Lemma 2.3. $G_{2} \notin \mathcal{H}_{2}$.
By Lemma 2.3, $G_{2} \notin \mathcal{H}_{2}$. As $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$ and by Lemma 3.3, $\mathcal{P}_{2}^{*}\left(G_{2}\right)=\emptyset$. Let $P=v_{n_{2}} v_{n_{2}-1} \cdots v_{1}$ be an optimal path of G_{2} at $e_{2}=$ $v_{n_{2}} v_{n_{2}-1}$. Say $\alpha\left(P, v_{1}\right)=r$. As $G_{2} \notin \mathcal{H}_{2}, r \leq n_{2}-1$. As $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$ and by Lemma 3.9, $J=v_{1} v_{2} \cdots v_{r} v_{1}$ is an end-cycle at v_{r} in G_{2} such that $d\left(v_{i}, J\right) \geq\left(n_{2}+2\right) / 2$ for all $i \in\{1, \ldots, r-1\}$. Let $J^{*}=\left\{v_{2}, v_{3}, \ldots, v_{r-2}\right\}$. Clearly, $r \geq\left(n_{2}+2\right) / 2+1=\left(n_{2}+4\right) / 2$.

Lemma 2.4. There exists no $u \in V\left(G_{1}\right)-V\left(e_{1}\right)$ such that $G_{1}-u \in \mathcal{P}_{1}$, $G_{2}+u \in \mathcal{H}_{2}$ and $d\left(u, J^{*}\right)>0$.
Lemma 2.5. $\delta_{1}\left(G_{1}\right) \leq\left(n_{1}-1\right) / 2$.
Let $w_{1} \in S_{1}\left(G_{1}\right)$ with $d\left(w_{1}, G_{1}\right)=\delta_{1}\left(G_{1}\right)$. Then $d\left(w_{1}, G_{2}\right) \geq\left(n_{1}+n_{2}+\right.$ $4) / 2-\left(n_{1}-1\right) / 2=\left(n_{2}+5\right) / 2$. Clearly, $d\left(w_{1}, J\right) \geq\left(n_{2}+5\right) / 2-\left(n_{2}-r\right) \geq 9 / 2$. Thus $d\left(w_{1}, J^{*}\right)>0$. By Lemma 2.4, $G_{2}+w_{1} \notin \mathcal{H}_{2}$. This implies that $w_{1} v_{n_{2}} \notin$ E and if $v_{n_{2}} v_{n_{2}-2} \in E$, then $w_{1} v_{n_{2}-1} \notin E$. Hence $\mathcal{P}_{2}^{*}\left(G_{2}+w_{1}\right)=\emptyset$. For each $v \in S_{2}\left(G_{2}+w_{1}\right)$, if $d\left(v, G_{2}+w_{1}\right) \leq\left(n_{2}+4\right) / 2$, then $d\left(v, G_{1}-w_{1}\right) \geq n_{1} / 2$ and so $G_{1}-w_{1}+v \in \mathcal{P}_{1}$ by Lemma 3.2(a). But $e\left(G_{1}-w_{1}+v\right)+e\left(G_{2}+w_{1}-v\right)>$ $e\left(G_{1}\right)+e\left(G_{2}\right)$, contradicting (1). Hence $\delta_{2}\left(G_{2}+w_{1}\right) \geq\left(n_{1}+5\right) / 2$. In the meantime, we see that $n_{2}-1 \geq\left\lceil\left(n_{2}+5\right) / 2\right\rceil$. Thus $n_{2} \geq 7$. With $G_{1}-w_{1}$ and $G_{2}+w_{1}$, this argument also implies the existence of the following two subgraphs G_{3} and G_{4}.

Let G_{3} and G_{4} be two disjoint subgraphs of G with $e\left(G_{3}\right)+e\left(G_{4}\right)$ maximal such that $\left|G_{3}\right|=n_{1}-1,\left|G_{4}\right|=n_{2}+1, G_{3} \in \mathcal{P}_{1}, G_{4} \in \mathcal{P}_{2}$ and $\mathcal{P}_{2}^{*}\left(G_{4}\right)=\emptyset$. By the above argument, $e\left(G_{3}\right)+e\left(G_{4}\right) \geq e\left(G_{1}\right)+e\left(G_{2}\right)-\left(n_{1}-1\right) / 2+\left(n_{2}+5\right) / 2$. If $d\left(v, G_{4}\right) \leq\left(\left|G_{4}\right|+3\right) / 2$ for some $v \in S_{2}\left(G_{4}\right)$, then $d\left(v, G_{3}\right) \geq\left(\left|G_{3}\right|+1\right) / 2$ and $e\left(G_{3}+v\right)+e\left(G_{4}-v\right)>e\left(G_{1}\right)+e\left(G_{2}\right)$. This contradicts (1) since $G_{3}+v \in \mathcal{P}_{1}$ by Lemma 3.2 (a). Thus $\delta_{2}\left(G_{4}\right) \geq\left(n_{2}+5\right) / 2=\left(\left|G_{4}\right|+4\right) / 2$. This argument is the key for a generalization leading to the following definition and the proofs of Lemma 2.6 and Lemma 2.7.

Let $k \geq 2$ be the largest integer such that there exist a sequence $\left(G_{1}, G_{2}\right)$, $\left(G_{3}, G_{4}\right), \ldots,\left(G_{2 k-1}, G_{2 k}\right)$ of disjoint pairs of subgraphs of G such that for each $i \in\{1, \ldots, k-1\}, G_{2 i-1} \in \mathcal{P}_{1}, G_{2 i} \in \mathcal{P}_{2}, \mathcal{P}_{2}^{*}\left(G_{2 i}\right)=\emptyset$ and there exists $w_{i} \in$ $S_{1}\left(G_{2 i-1}\right)$ such that $\delta_{1}\left(G_{2 i-1}\right)=d\left(w_{i}, G_{2 i-1}\right) \leq\left(\left|G_{2 i-1}\right|-1\right) / 2, d\left(w_{i}, G_{2 i}\right) \geq$ $\left(\left|G_{2 i}\right|+5\right) / 2$ and $G_{2 i}+w_{i} \notin \mathcal{H}_{2}$. Moreover, for each $i \in\{1, \ldots, k-1\}$, $e\left(G_{2 i+1}\right)+e\left(G_{2 i+2}\right)$ is maximal such that $\left|G_{2 i+1}\right|=\left|G_{2 i-1}\right|-1,\left|G_{2 i+2}\right|=$ $\left|G_{2 i}\right|+1, G_{2 i+1} \in \mathcal{P}_{1}, G_{2 i+2} \in \mathcal{P}_{2}$ and $\mathcal{P}_{2}^{*}\left(G_{2 i+2}\right)=\emptyset$. By the above argument, k is well defined.

Lemma 2.6. The following two statements hold:
(a) For each $i \in\{1, \ldots, k\},\left|G_{2 i-1}\right|=n_{1}-i+1$ and $\left|G_{2 i}\right|=n_{2}+i-1$.
(b) For each $i \in\{1, \ldots, k\}, \delta_{2}\left(G_{2 i}\right) \geq\left(\left|G_{2 i}\right|+4\right) / 2$.

Say $s=\left|G_{2 k-1}\right|$ and $\left|G_{2 k}\right|=t$. As $n_{2} \geq 7, t \geq 8$. By Lemma 2.6, $\delta_{2}\left(G_{2 k}\right) \geq$ $(t+4) / 2$. Let $L=y_{t} y_{t-1} \cdots y_{1}$ be an optimal path at $e_{2}=y_{t} y_{t-1}$ in $G_{2 k}$. Say $r=\alpha\left(L, y_{1}\right)$. Then $r \geq \delta_{2}\left(G_{2}\right)+1 \geq\lceil(t+4) / 2+1\rceil=\lceil(t+6) / 2\rceil \geq 7$. As $\mathcal{P}_{2}^{*}\left(G_{2 k}\right)=\emptyset, r \leq t-1$. Let $R=\left[y_{1}, y_{2}, \ldots, y_{r}\right]$ and $R^{\prime}=R-y_{r}$. By Lemma 2.6 and Lemma 3.9, $y_{1} y_{2} \cdots y_{r} y_{1}$ is an end-cycle at y_{r} in $G_{2 k}$ and so $\delta\left(R^{\prime}\right) \geq(t+4) / 2-1 \geq\left(\left|R^{\prime}\right|+4\right) / 2$. By the minimality of $|G|$, Theorem B holds for R^{\prime}. Note that $R^{\prime}-\{x, y\}$ is hamiltonian connected for all $\{x, y\} \subseteq V\left(R^{\prime}\right)$ by Lemma 3.4. Clearly, $s \geq d\left(y_{t}, G_{2 k-1}\right) \geq(s+t+4) / 2-2=(s+t) / 2$. This implies that $s \geq t$ and if equality holds, then $N\left(y_{t}, G_{2 k}\right)=\left\{y_{t-1}, y_{t-2}\right\}$ and $r \leq t-2$.

Lemma 2.7. For no $x \in V\left(G_{2 k-1}\right)$, $G_{2 k-1}-x \in \mathcal{P}_{1}, G_{2 k}+x \in \mathcal{H}_{2}$ and $d\left(x, R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right)>0$.

To prove Theorem B, let $y_{c} \in V\left(R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right)$. Then $d\left(y_{c} y_{t}, G_{2 k-1}\right) \geq$ $s+t+4-(t-1)=s+5$ and so $i\left(y_{c} y_{t}, G_{2 k-1}\right) \geq 5$. By Lemma 2.7, $G_{2 k-1}-x \notin \mathcal{P}_{1}$ for all $x \in I\left(y_{c} y_{t}, G_{2 k-1}\right)$ and so $G_{2 k-1} \notin \mathcal{H}_{1}$. If $\delta_{1}\left(G_{2 k-1}\right) \leq(s-1) / 2$, let $w_{k} \in S_{1}\left(G_{2 k-1}\right)$ with $d\left(w_{k}, G_{2 k-1}\right)=\delta_{1}\left(G_{2 k-1}\right)$. As $d\left(w_{k}, G_{2 k}\right) \geq(t+5) / 2$, $d\left(w_{k}, R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right) \geq 1$. By Lemma 2.7, $G_{2 k}+w_{k} \notin \mathcal{H}_{2}$. Thus $w_{k} y_{t} \notin E$ and if $y_{t} y_{t-2} \in E$, then $w_{k} y_{t-1} \notin E$. Therefore $\mathcal{P}_{2}^{*}\left(G_{2 k}+w_{k}\right)=\emptyset$. This allows us to define $\left(G_{2 k+1}, G_{2 k+2}\right)$ to lengthen the sequence $\left(G_{1}, G_{2}\right), \ldots,\left(G_{2 k-1}, G_{2 k}\right)$. This contradicts the maximality of k. Therefore $\delta_{1}\left(G_{2 k-1}\right) \geq s / 2$. Recall that $d\left(y_{t}, G_{2 k-1}\right) \geq(s+t) / 2$. If $\mathcal{P}_{1}^{*}\left(G_{2 k-1}\right) \neq \emptyset$, then by Lemma $3.5(\mathrm{c})$, we see that $G_{2 k-1}$ has a $u-v e_{1}$-hamiltonian path such that $v \notin V\left(e_{1}\right), d\left(v, G_{2 k-1}\right)=s / 2$ and $v y_{t} \in E$. As $d\left(v, G_{2 k}\right) \geq(t+4) / 2, d\left(v, R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right)>0$ and so $G_{2 k}+v \in \mathcal{H}_{2}$, contradicting Lemma 2.7. Therefore $\mathcal{P}_{1}^{*}\left(G_{2 k-1}\right)=\emptyset$. Let $P=z_{s} z_{s-1} \cdots z_{1}$ be an optimal path at $e_{1}=z_{s} z_{s-1}$ in $G_{2 k-1}$. Say $\alpha\left(P, z_{1}\right)=q$. As $d\left(z_{s}, G_{2 k-1}\right) \leq 2, t \geq d\left(z_{s}, G_{2 k}\right) \geq(s+t+4) / 2-2$ and so $t \geq s$. Since $s \geq t$, it follows that $s=t$ and $d\left(z_{s}, G_{2 k}\right)=t=d\left(y_{t}, G_{2 k-1}\right)$. By Lemma 2.7, we see that $d\left(z_{i}, R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right)=0$ for all $i \in\{1, \ldots, q-1\}$. Then $t+2 \leq d\left(y_{c}, G\right) \leq r-1+d\left(y_{c}, G_{2 k-1}\right) \leq r-1+t-q+1=t+r-q$. Thus $r-q \geq 2$. Then $t+2 \leq d\left(z_{1}, G\right) \leq q-1+d\left(z_{1}, G_{2 k}\right) \leq q-1+t-r+3 \leq t$, a contradiction. This proves the theorem.

3. Auxiliary lemmas

In the following, $G=(V, E)$ is a graph. We will use the following lemmas. Lemma 3.1 is an easy observation.

Lemma 3.1. Let $P=x_{1} \cdots x_{r}$ be a path of order r in G. Let u and v be two vertices of $G-V(P)$. Suppose that $d(u v, P) \geq r+1$ and $\left\{u x_{i+1}, v x_{i}\right\} \nsubseteq E$ for all $i \in\{1, \ldots, r-1\}$. Then $d(u v, P)=r+1$ and $\left\{u x_{1}, v x_{r}\right\} \subseteq E$. Moreover, either $N(u, P)=\left\{x_{1}, \ldots, x_{a}\right\}$ and $N(v, P)=\left\{x_{a}, \ldots, x_{r}\right\}$ for some $a \in\{1, \ldots, r\}$, or $d\left(x_{i}, u v\right)=0$ for some $1<i<r$.
Lemma 3.2. Let P be a u-v path of order r in $G, e \in E(P)$ and $x \in V(G)-$ $V(P)$. The following five statements hold:
(a) If $d(x, P)>r / 2$, then $P+x$ has an e-hamiltonian path.
(b) If $d(x, P)>(r+1) / 2, P+x$ has an e-hamiltonian path ending at v.
(c) If $d(x, P)>(r+2) / 2$, then $P+x$ has a u-v e-hamiltonian path.
(d) If $d(x v, P) \geq r+2$, then $[P+x]$ has a u-x e-hamiltonian path.
(e) If $d(x v, P) \geq r+1$, then $[P+x]$ has an e-hamiltonian path.
(f) If $d(x, P)>(r+1) / 2$ and $u v \in E$, then $P+u v+x$ has an e-hamiltonian cycle.
Proof. Let P_{1} and P_{2} be the two components of $P-e$ with v in P_{2}. If $d(x, f)=2$ for some $f \in E(P-e)$, then (a), (b) and (c) hold. So if one of (a), (b)
and (c) fails, then $d(x, f) \leq 1$ for all $f \in E(P)-\{e\}$. This implies that $d\left(x, P_{i}\right) \leq\left(\left|P_{i}\right|+1\right) / 2$ for $i \in\{1,2\}$ and so $d(x, P) \leq(r+2) / 2$. Furthermore, for each $i \in\{1,2\}$, if $d\left(x, P_{i}\right)=\left(\left|P_{i}\right|+1\right) / 2$, then $\left|P_{i}\right|$ is odd and x is adjacent to the two endvertices of P_{i} and so the first three statements follow.

If one of (d) and (e) fails, then $\left\{v z, x z^{+}\right\} \nsubseteq E$ for each $z \in V(P)$ with $z z^{+} \neq e$. This implies that $d(x v, P) \leq r+1$. So (d) holds. Obviously, (e) would hold if $u v \in E$ or $d(x, u v)>0$. To see (e), say $u v \notin E$ and $d(x, u v)=0$. Then apply (d) to $P-u$ and x.

To obtain (f), we see that there exists an edge e^{\prime} on $P+u v$ with $e^{\prime} \neq e$ such that $d\left(x, e^{\prime}\right)=2$.

Lemma 3.3. Let P be a u-v path of order $r \geq 3$ in G. Let $e \in E(P)$. Suppose that $d(u v, P) \geq r+\epsilon$ where $\epsilon=0$ if $\sigma(P, e)=0$ and $\epsilon=1$ if $\sigma(P, e)>0$. Then $[P]$ has an e-hamiltonian cycle.

Proof. If $u v \in E$, nothing to prove. So assume $u v \notin E$. Then the condition implies that some edge $f \in E(P)-\{e\}$ is an accessible edge and this yields a required cycle.

Lemma 3.4 ([3]). If H is a graph of order $r \geq 3$ and $d(x y, H) \geq r+1$ for each pair x and y of nonadjacent vertices of H, then H is hamiltonian connected and so for each $e \in E(H), H$ has an e-hamiltonian cycle.

Lemma 3.5. Let $P=x_{1} \cdots x_{r}$ be a path of order $r \geq 3$ in G. Let $e \in E(P)$. Suppose that $[P]$ does not have an e-hamiltonian cycle and $d\left(x_{1} x_{r}, P\right) \geq r$. Let $R=\left\{x_{i} \mid d\left(x_{i}, x_{1} x_{r}\right)=0,1<i<r\right\}$ and \mathcal{P} be the set of all the components of $P-R \cup\left\{x_{1}, x_{r}\right\}-e$. Then $\sigma(e, P)>0, d\left(x_{1} x_{r}, P\right)=r$ and the following three statements hold:
(a) $R \cup\left\{x_{1}, x_{r}\right\}$ is an independent set;
(b) $d\left(x_{l}, P^{\prime}\right) \leq 1$ for all $x_{l} \in R$ and $P^{\prime} \in \mathcal{P}$;
(c) If $d^{*}(L, P) \geq r$ for every e-hamiltonian path L of $[P]$ with $\sigma(L, e)>0$, then either $V(P)$ has a partition $X \cup Y$ such that $|X|=r / 2, V(e) \subseteq X$, $Y=R \cup\left\{x_{1}, x_{r}\right\}$ and $N(y, P)=X$ for all $y \in Y$, or $[P]-V(e)$ has two complete components H_{1} and H_{2} such that $\left|H_{1}\right|+\left|H_{2}\right|=r-2$ and $V\left(H_{1} \cup H_{2}\right) \subseteq N(x)$ for each $x \in V(e)$.

Proof. By Lemma 3.3, $\sigma(e, P)>0$ and $d\left(x_{1} x_{r}, P\right)=r$. Clearly, $|\mathcal{P}| \leq|R|+2$ and $|\mathcal{P}|+|R| \leq \sum_{P^{\prime} \in \mathcal{P}}\left|P^{\prime}\right|+|R| \leq r-2$. Say $e=x_{a} x_{a+1}$. Since $[P]$ does not have an e-hamiltonian cycle, each $x_{i} x_{i+1}$ with $i \neq a$ is not an accessible edge of P. By Lemma 3.1, $d\left(x_{1} x_{r}, P^{\prime}\right) \leq\left|P^{\prime}\right|+1$ for each $P^{\prime} \in \mathcal{P}$. Thus $d\left(x_{1} x_{r}, P\right) \leq$ $(r-2)-|R|+|\mathcal{P}| \leq r$. It follows that $|\mathcal{P}|=|R|+2$ and $d\left(x_{1} x_{r}, P^{\prime}\right)=\left|P^{\prime}\right|+1$ for each $P^{\prime} \in \mathcal{P}$. Consequently, $\left\{x_{2}, x_{a}, x_{a+1}, x_{r-1}\right\} \cap R=\emptyset, R$ does not contain two consecutive vertices of P, and for each $P^{\prime}=P\left[x_{i}, x_{j}\right] \in \mathcal{P}$ there exists $i \leq k \leq j$ such that $N\left(x_{1}, P^{\prime}\right)=\left\{x_{i}, \ldots, x_{k}\right\}$ and $N\left(x_{r}, P^{\prime}\right)=\left\{x_{k}, \ldots, x_{j}\right\}$. In particular, $\left\{x_{1} x_{a+1}, x_{r} x_{a}\right\} \subseteq E$. It is easy to see that R is an independent set for otherwise $[P]$ has an e-hamiltonian cycle. So (a) holds.

To see (b), say $d\left(x_{l}, P^{\prime}\right) \geq 2$ for some $x_{l} \in R$ and $P^{\prime}=P\left[x_{i}, x_{j}\right] \in \mathcal{P}$. Let $x_{k} \in V\left(P^{\prime}\right)$ be such that $N\left(x_{1}, P^{\prime}\right)=\left\{x_{i}, \ldots, x_{k}\right\}$ and $N\left(x_{r}, P^{\prime}\right)=$ $\left\{x_{k}, \ldots, x_{j}\right\}$. Say without loss of generality that $l<i$. Let $x_{p} \in V\left(P^{\prime}\right)$ be such that $x_{l} x_{p} \in E$ and $p \neq i$. If $p \leq k$, then

$$
x_{1} P\left[x_{1}, x_{l-1}\right] P^{-}\left[x_{r}, x_{p}\right] x_{l} P\left[x_{l+1}, x_{p-1}\right] x_{1}
$$

is an e-hamiltonian cycle of $[P]$ and if $p>k$, then

$$
x_{1} P\left[x_{1}, x_{l}\right] P\left[x_{p}, x_{r}\right] P^{-}\left[x_{p-1}, x_{l+1}\right] x_{1}
$$

is an e-hamiltonian cycle of $[P]$, a contradiction. Hence (b) holds.
To see (c), it is easy to observe that for each $x_{l} \in R,[P]$ has an x_{1} $x_{l} e$-hamiltonian path and an $x_{r}-x_{l} e$-hamiltonian path. If $R \neq \emptyset$, then $d\left(x_{l} x_{1}, P\right) \geq r, d\left(x_{l} x_{r}, P\right) \geq r$ and so $d\left(x_{l}, P\right) \geq r / 2$ for each $x_{l} \in R$. Since $|\mathcal{P}|=|R|+2$ and $|\mathcal{P}|+|R| \leq r-2$, it follows that $|\mathcal{P}|=r / 2$ and $\left|P^{\prime}\right|=1$ for all $P^{\prime} \in \mathcal{P}$. Thus $X \cup Y$ with $Y=R \cup\left\{x_{1}, x_{r}\right\}$ and $X=V(P)-Y$ is a partition of $V(P)$ satisfying (c). Next, assume that $R=\emptyset$. Let $2 \leq b \leq a$ and $a+1 \leq c \leq r-1$ be such that $N\left(x_{1}, P\right)=\left\{x_{2}, \ldots, x_{b}\right\} \cup\left\{x_{a+1}, \ldots, x_{c}\right\}$ and $N\left(x_{r}, P\right)=\left\{x_{b}, \ldots, x_{a}\right\} \cup\left\{x_{c}, \ldots, x_{r-1}\right\}$. Then we readily see that for each $x_{i} \in N\left(x_{1}, P\right)-\left\{x_{b}, x_{a}, x_{a+1}, x_{c}\right\}$ and $x_{j} \in N\left(x_{r}, P\right)-\left\{x_{b}, x_{a}, x_{a+1}, x_{c}\right\}$, [P] has an $x_{i}-x_{r} e$-hamiltonian path, an $x_{1}-x_{j} e$-hamiltonian path, an $x_{i^{-}}$ $x_{j} e$-hamiltonian path and so $x_{i} x_{j} \notin E$. It follows that $N\left(x_{i}, P\right) \cup\left\{x_{i}\right\}=$ $N\left(x_{1}, P\right) \cup\left\{x_{1}\right\}$ and $N\left(x_{j}, P\right) \cup\left\{x_{j}\right\}=N\left(x_{r}, P\right) \cup\left\{x_{r}\right\}$ for all $x_{i} \in N\left(x_{1}, P\right)-$ $\left\{x_{b}, x_{a}, x_{a+1}, x_{c}\right\}$ and $x_{j} \in N\left(x_{r}, P\right)-\left\{x_{b}, x_{a}, x_{a+1}, x_{c}\right\}$. Thus if $b<a$, then $x_{1} P^{-}\left[x_{c}, x_{b+1}\right] P^{-}\left[x_{r}, x_{c+1}\right] P^{-}\left[x_{b}, x_{1}\right]$ is an e-hamiltonian cycle of $[P]$, a contradiction. Hence $b=a$. Similarly, $c=a+1$. This proves (c).

Lemma 3.6. Let C be a cycle of order r in G. Let u and v be two distinct vertices on C and e an edge of C with $e \notin\left\{u u^{+}, v v^{+}\right\}=\emptyset$. Set $R=$ $\{x \mid d(x, u v)=0, x \in V(C)-\{u, v\}\}$. Let \mathcal{P} be the set of all the components of $C-(R \cup\{u, v\})-e$. Suppose that $d(u v, C) \geq r+1$ and $[C]$ does not have a $u^{+}-v^{+}$e-hamiltonian path. Then $d(u v, C)=r+1$ and the following four statements hold:
(a) Each edge of $C-e$ is inaccessible on C with respect to $\{u, v\}$;
(b) $V(e) \cap(R \cup\{u, v\})=\emptyset, d(u v, P)=|P|+1$ for all $P \in \mathcal{P}$ and $|\mathcal{P}|=$ $|R|+3$.
(c) R is an independent set and $d(x, P) \leq 1$ for all $x \in R$ and $P \in \mathcal{P}$.
(d) If $d(z, C) \geq(r+1) / 2$ for all $z \in V(C)-V(e)$, then r is odd. Moreover, either $[C]$ has a vertex-cut X with $V(e) \subseteq X$ and $|X|=3$ such that [C] has exactly two components isomorphic to $K_{(r-3) / 2}$ and $X \subseteq N(y)$ for all $y \in V(C)-X$, or $V(C)$ has a partition $X \cup Y$ such that $|X|=$ $(r+1) / 2,|Y|=(r-1) / 2, Y=R \cup\{u, v\}, V(e) \subseteq X$ and $N(y, C)=X$ for all $y \in Y$.
Proof. It is easy to check that (a) holds since $[C]$ does not have a $u^{+}{ }_{-} v^{+} e-$ hamiltonian path. In particular, $u v \notin E$. Clearly, $|\mathcal{P}| \leq|R|+3$ and $|\mathcal{P}|+|R| \leq$
$\sum_{P \in \mathcal{P}}|P|+|R|=r-2$. By (a) and Lemma 3.1, $d(u v, P) \leq|P|+1$ for each $P \in \mathcal{P}$ and so $d(u v, C) \leq r+1$. Since $d(u v, C) \geq r+1$, it follows that $d(u v, C)=r+1,|\mathcal{P}|=|R|+3, V(e) \cap(R \cup\{u, v\})=\emptyset$, and $d(u v, P)=|P|+1$ for all $P \in \mathcal{P}$. So (b) holds.

As $|\mathcal{P}|=|R|+3, R$ does not contain two consecutive vertices of C. To proves (c), Let $C=x_{1} \cdots x_{r} x_{1}$ be such that $x_{1}=u, x_{2}=u^{+}, x_{p}=v$ and $x_{p+1}=v^{+}$. Without loss of generality, say $e=x_{q} x_{q+1}$ for some $q \in\{p+1, \ldots, r-1\}$. We first check that R is an independent set. Let $L_{1}=C\left(x_{1}, x_{p}\right), L_{2}=C\left(x_{p}, x_{q}\right]$ and $L_{3}=C\left[x_{q+1}, x_{r}\right]$. Let $R_{i}=R \cap V\left(L_{i}\right)$ for $i \in\{1,2,3\}$. Say $x_{i} x_{j} \in E$ for some $\left\{x_{i}, x_{j}\right\} \subseteq R$ with $i<j$. We shall obtain a contradiction by showing that $[C]$ has an $x_{2}-x_{p+1} e$-hamiltonian path. According to the locations of x_{i} and x_{j} in $R=R_{1} \cup R_{2} \cup R_{3}$, there are six cases to check, which are very similar in the verification. So we just show one example with $x_{i} \in R_{1}$ and $x_{j} \in R_{3}$. In this case, $\left\{x_{1} x_{i+1}, x_{p} x_{i-1}\right\} \subseteq E$ and $\left\{x_{1} x_{j-1}, x_{p} x_{j+1}\right\} \subseteq E$ by (a), (b) and Lemma 3.1. Then

$$
x_{2} C\left[x_{2}, x_{i-1}\right] x_{p} C^{-}\left[x_{p}, x_{i}\right] x_{i} x_{j} C\left[x_{j}, x_{1}\right] x_{j-1} C^{-}\left[x_{j-1}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of [C], a contradiction.
Next, we show that $d(x, P) \leq 1$ for all $x \in R$ and $P \in \mathcal{P}$. On the contrary, say $d(x, P) \geq 2$ for some $x \in R$ and $P \in \mathcal{P}$. We shall obtain a contradiction by showing that $[C]$ has an $x_{2}-x_{p+1} e$-hamiltonian path. According to the locations of x in $R_{1} \cup R_{2} \cup R_{3}$ and P on $L_{1} \cup L_{2} \cup L_{3}$, there are nine cases to check, which are also very similar in the verification. So we just show one example with $x \in R_{1}$ and P on L_{3}. Say $P=C\left[x_{i}, x_{j}\right]$. By (a), (b) and Lemma 3.1, $N\left(x_{1}, P\right)=\left\{x_{a}, \ldots, x_{j}\right\}$ and $N\left(x_{p}, P\right)=\left\{x_{i}, \ldots, x_{a}\right\}$ for some $i \leq a \leq j$. Since $d(x, P) \geq 2, x x_{t} \in E$ for some $x_{t} \in V(P)$ with $t \neq x_{i}$. If $t>a$, then

$$
x_{2} C\left[x_{2}, x^{-}\right] x_{p} C^{-}\left[x_{p}, x\right] x x_{t} C\left[x_{t}, x_{1}\right] x_{t-1} C^{-}\left[x_{t-1}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of $[C]$, a contradiction. Thus $t \leq a$. Then

$$
x_{2} C\left[x_{2}, x\right] x x_{t} C\left[x_{t}, x_{1}\right] x^{+} C\left[x^{+}, x_{p}\right] x_{t-1} C^{-}\left[x_{t-1}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of [C], a contradiction.
To prove (d), we have $d(x, C) \leq|\mathcal{P}|$ for all $x \in R$ by (c). Since $|\mathcal{P}| \leq$ $r-|R|-2$ and $|\mathcal{P}|=|R|+3$, we obtain $d(x, C) \leq(r+1) / 2$ for all $x \in R$. It follows that if $R \neq \emptyset$, then r is odd and $|P|=1$ for all $P \in \mathcal{P}$. Consequently, if $Y=R \cup\{u, v\}$ and $X=V(C)-Y$, then $N(y, C)=X$ for all $y \in Y$ and so (d) holds. So assume that $R=\emptyset$. By (a), (b) and Lemma 3.1, there exists $x_{a_{i}} \in V\left(L_{i}\right)$ for $i \in\{1,2,3\}$ such that

$$
\begin{aligned}
& N\left(x_{1}, C\right)=V\left(L_{1}\left[x_{2}, x_{a_{1}}\right]\right) \cup V\left(L_{2}\left[x_{a_{2}}, x_{q}\right]\right) \cup V\left(L_{3}\left[x_{a_{3}}, x_{r}\right]\right), \\
& N\left(x_{p}, C\right)=V\left(L_{1}\left[x_{a_{1}}, x_{p-1}\right]\right) \cup V\left(L_{2}\left[x_{p+1}, x_{a_{2}}\right]\right) \cup V\left(L_{3}\left[x_{q+1}, x_{a_{3}}\right]\right) .
\end{aligned}
$$

We claim that for each vertex x of $L_{1}\left[x_{2}, x_{a_{1}}\right) \cup L_{2}\left(x_{a_{2}}, x_{q}\right) \cup L_{3}\left(x_{a_{3}}, x_{r}\right]$, $N(x, C) \subseteq N\left(x_{1}, C\right) \cup\left\{x_{1}\right\}$. If this is false, say $x y \in E(G)$ for some vertex x of $L_{1}\left[x_{2}, x_{a_{1}}\right) \cup L_{2}\left(x_{a_{2}}, x_{q}\right) \cup L_{3}\left(x_{a_{3}}, x_{r}\right]$ and $y \in V(C)-N\left(x_{1}, C\right)-\left\{x_{1}\right\}$. We
shall obtain a contradiction by showing that $[C]$ has an $x_{2}-x_{p+1} e$-hamiltonian path. According to the locations of x in $L_{1}\left[x_{2}, x_{a_{1}}\right) \cup L_{2}\left(x_{a_{2}}, x_{q}\right) \cup L_{3}\left(x_{a_{3}}, x_{r}\right]$ and y on $L_{1} \cup L_{2} \cup L_{3}$, there are nine cases to check, which are very similar in the verification. So we just show one example with x in $L_{3}\left(x_{a_{3}}, x_{r}\right]$ and y on $L_{1}\left(x_{a_{1}}, x_{p-1}\right]$. In this case,

$$
x_{2} C\left[x_{2}, y^{-}\right] x_{p} C^{-}\left[x_{p}, y\right] x C\left[x, x_{1}\right] x^{-} C^{-}\left[x^{-}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of $[C]$, a contradiction.
Similarly, $N(y, C) \subseteq N\left(x_{p}, C\right) \cup\left\{x_{p}\right\}$ for each vertex y of $L_{1}\left(x_{a_{1}}, x_{p-1}\right] \cup$ $L_{2}\left[x_{p+1}, x_{a_{2}}\right) \cup L_{3}\left(x_{q+1}, x_{a_{3}}\right)$. As $d(x, C) \geq(r+1) / 2$ for all $x \in V(C)-V(e)$, we see that r is odd and $d\left(x_{1}, C\right)=d\left(x_{p}, C\right)=(r+1) / 2$. Furthermore, if $\left\{x_{a_{2}}, x_{a_{3}}\right\}=\left\{x_{q}, x_{q+1}\right\}$, then $\left\{x_{a_{1}}, x_{q}, x_{q+1}\right\}$ is a vertex-cut of $[C]$ and each component of $[C]-\left\{x_{a_{1}}, x_{q}, x_{q+1}\right\}$ is isomorphic to $K_{(r-3) / 2}$. Consequently, (d) holds. So assume that $\left\{x_{a_{2}}, x_{a_{3}}\right\} \neq\left\{x_{q}, x_{q+1}\right\}$. We shall obtain a contradiction by showing that $[C]$ has an $x_{2}-x_{p+1} e$-hamiltonian path. If $x_{q+1} \neq x_{a_{3}}$, then

$$
x_{2} C\left[x_{2}, x_{a_{1}}\right] x_{1} C^{-}\left[x_{1}, x_{q+2}\right] x_{a_{1}+1} C\left[x_{a_{1}+1}, x_{p}\right] x_{q+1} C^{-}\left[x_{q+1}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of $[C]$, a contradiction. Therefore $x_{q+1}=x_{a_{3}}$ and $x_{q} \neq x_{a_{2}}$. Then

$$
x_{2} C\left[x_{2}, x_{p}\right] x_{q+1} x_{q} x_{1} C^{-}\left[x_{1}, x_{q+1}^{+}\right] x_{q-1} C^{-}\left[x_{q-1}, x_{p+1}\right]
$$

is an $x_{2}-x_{p+1} e$-hamiltonian path of $[C]$, a contradiction. This proves the lemma.

Lemma 3.7. Let C be a cycle of order r in G. Let λ be a positive integer. Let $e \in E(C)$. Suppose that $d^{*}(P, C) \geq r+\lambda$ for every e-hamiltonian path P of $[C]$. Then $d(x y, C) \geq r+\lambda$ for every pair x and y of distinct vertices of C with $V(e) \neq\{x, y\}$.
Proof. On the contrary, say that there are two distinct vertices x and y on C with $V(e) \neq\{x, y\}$ such that $d(x y, C) \leq r+\lambda-1$. Clearly, either $e \notin$ $\left\{x x^{-}, y y^{-}\right\}$or $e \notin\left\{x x^{+}, y y^{+}\right\}$. Say without loss of generality the former holds. Then $d\left(x x^{-}, C\right) \geq r+\lambda$ and $d\left(y y^{-}, C\right) \geq r+\lambda$. Thus $d\left(x^{-} y^{-}, C\right) \geq$ $2(r+\lambda)-(r+\lambda-1) \geq r+2$. By Lemma 3.6, $[C]$ has an $x-y e$-hamiltonian path and therefore $d(x y, C) \geq r+\lambda$, a contradiction.
Lemma 3.8. Let $C=x_{1} \cdots x_{r} x_{1}$ be a cycle in G. Let $e=x_{1} x_{2}$. Suppose that $d^{*}(P, C) \geq r+1$ for each e-hamiltonian path P of $[C]$ with $\sigma(P, e)>0$. If there exists $x_{j} \in V(C)-V(e)$ such that $d\left(x_{j}, C\right) \leq r / 2$, then one of the following two statement holds:
(a) If $4 \leq j \leq r-1$, then $d\left(x_{i}, C\right) \geq(r+2) / 2$ for all $3 \leq i \leq r$ with $i \neq j$;
(b) If $j \in\{3, r\}$, then $d\left(x_{i}, C\right) \geq(r+2) / 2$ for all $4 \leq i \leq r-1$.

Proof. To prove (a), say $4 \leq j \leq r-1$. Then $d\left(x_{j-1}, C\right) \geq r+1-d\left(x_{j}, C\right) \geq$ $(r+2) / 2$. Similarly, $d\left(x_{j+1}, C\right) \geq(r+2) / 2$. If $d\left(x_{i}, C\right) \leq(r+1) / 2$ for some $3 \leq i \leq r$ with $i \neq j$, let x_{i} be the one closest to x_{j} on $C-e$. Say without loss
of generality $i>j$. Then $d\left(x_{i-1}, C\right) \geq(r+2) / 2$. Thus $d\left(x_{j-1} x_{i-1}, C\right) \geq r+2$. By Lemma 3.6, $[C]$ has an x_{j} - $x_{i} e$-hamiltonian path and so $d\left(x_{i} x_{j}, C\right) \geq r+1$. Thus $d\left(x_{i}, C\right) \geq r+1-r / 2=(r+2) / 2$, a contradiction.

To prove (b), say without loss of generality that $d\left(x_{3}, C\right) \leq r / 2$, i.e., $d\left(x_{3}, C\right)$ $\leq\lfloor r / 2\rfloor$. If $r \leq 4$, nothing to prove. So assume $r \geq 5$. Then $d\left(x_{4}, C\right) \geq r+1-$ $\lfloor r / 2\rfloor=\lceil(r+2) / 2\rceil$. Similarly, if $d\left(x_{r}, C\right) \leq r / 2$, then $d\left(x_{r-1}, C\right) \geq\lceil(r+2) / 2\rceil$ and so $d\left(x_{4} x_{r-1}, C\right) \geq r+2$. If $d\left(x_{r}, C\right) \not \leq r / 2$, i.e., $d\left(x_{r}, C\right) \geq\lceil(r+1) / 2\rceil$, then $d\left(x_{4} x_{r}, C\right) \geq\lceil(r+2) / 2\rceil+\lceil(r+1) / 2\rceil=r+2$. Let $s \in\{r-1, r\}$ be maximal such that $d\left(x_{4} x_{s}, C\right) \geq r+2$. If $d\left(x_{i}, C\right) \leq(r+1) / 2$ for some $i \in\{5, \ldots, r-1\}$, let x_{i} be the one closest to x_{s} on $C-e$. Then $d\left(x_{4} x_{i+1}, C\right) \geq r+2$. By Lemma 3.6, $[C]$ has an $x_{3}-x_{i} e$-hamiltonian path and so $d\left(x_{i}, C\right) \geq r+1-r / 2=(r+2) / 2$, a contradiction.

Lemma 3.9 ([6]). Let $P=x_{t} x_{t-1} \cdots x_{1}$ be an optimal path at x_{t} in G. Let $r=\alpha\left(P, x_{1}\right)$ and $c>r / 2$. Suppose that for each $v \in V(G)$, if there exists a longest path starting at x_{t} in G such that the path ends at v, then $d(v) \geq c$. Then $N\left(x_{i}\right) \subseteq\left\{x_{1}, x_{2}, \ldots, x_{r}\right\},[P]$ has an $x_{t}-x_{i}$ hamiltonian path and $d\left(x_{i}\right) \geq c$ for all $i \in\{1,2, \ldots, r-1\}$. Moreover, if $t>r$, then x_{r} is a cut-vertex of G.

Lemma 3.10. Let $P=x_{t} x_{t-1} \cdots x_{1}$ be an optimal path at x_{t} in G. Let $r=$ $\alpha\left(P, x_{1}\right)$. Suppose that $r \geq 3$ and for each $v \in V(G)$, if there exists a longest path starting at x_{t} in G such that the path ends at v, then $d(v) \geq(r+2) / 2$. Then for each pair x_{i} and x_{j} of distinct vertices in $\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}$, the following three statements hold:
(a) If $d\left(x_{r},\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}\right) \geq 3$, then $[P]-x_{i}$ has an $x_{t}-x_{j}$ hamiltonian path;
(b) If $N\left(x_{r},\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}\right)=\left\{x_{1}, x_{r-1}\right\}$ but $i \notin\{1, r-1\}$, then $[P]-x_{i}$ has an $x_{t}-x_{j}$ hamiltonian path;
(c) If $N\left(x_{r},\left\{x_{1}, x_{2}, \ldots, x_{r-1}\right\}\right)=\left\{x_{1}, x_{r-1}\right\}$ and $i \in\{1, r-1\}$ but $j \notin$ $\{1, r-1\}$, then $[P]-x_{i}$ has an $x_{t}-x_{j}$ hamiltonian path.

Proof. Obviously, the lemma is true if $r \leq 4$. So assume $r \geq 5$. Let $H=$ [$\left.\left\{x_{1}, \ldots, x_{r}\right\}-\left\{x_{i}\right\}\right]$. By Lemma 3.9, for each $x_{l} \in\left\{x_{1}, \ldots, x_{r-1}\right\},[P]$ has an $x_{t}-x_{l}$ hamiltonian path, $N\left(x_{l}, G\right) \subseteq V(H) \cup\left\{x_{i}\right\}$ and $d\left(x_{l}, H+x_{i}\right) \geq(r+2) / 2$. Moreover, x_{r} is a cut-vertex of $[P]$ if $t>r$, and consequently, $H+x_{i}$ has an $x_{r^{-}}$ x_{i} hamiltonian path and so H has a hamiltonian path starting at x_{r}. Obviously, for each $v \in V\left(H-x_{r}\right), d(v, H) \geq(r+2) / 2-1=((r-1)+1) / 2$. Let L be an optimal path at x_{r} in H. Say L is an $x_{r}-y$ path. Then $\alpha(L, y) \leq r-1$. As $\delta\left(H-x_{r}\right) \geq(r+2) / 2-2=(r-2) / 2, H-x_{r}$ is hamiltonian. If $d\left(x_{r}, H\right) \geq 2$, then H is 2-connected and by applying Lemma 3.9 to L in H, we see that $\alpha(L, y)=r-1$. Consequently, H has an $x_{r}-x_{j}$ hamiltonian path and so $\left[P-x_{i}\right]$ has an $x_{t}-x_{j}$ hamiltonian path. Therefore (a) and (b) hold. If $d\left(x_{r}, H\right)=1$, then $x_{i} \in\left\{x_{1}, x_{r-1}\right\}$ and so $\alpha(L, y)=r-2$. Moreover, the vertex z with $\left\{x_{i}, z\right\}=\left\{x_{1}, x_{r-1}\right\}$ is a cut-vertex of H. To see (c), we have $x_{j} \notin\left\{x_{1}, x_{r-1}\right\}$ and H has an $x_{r}-x_{j}$ hamiltonian path.

4. Proof of Lemmas 2.1-2.7

Proof of Lemma 2.1. On the contrary, say $d\left(x_{1}, G_{1}\right) \geq\left(n_{1}+2\right) / 2$ and $d\left(y_{1}, G_{2}\right)$ $\geq\left(n_{2}+2\right) / 2$, i.e., $\delta_{1}\left(G_{1}\right) \geq\left(n_{1}+2\right) / 2$ and $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$. Say without loss of generality $G_{1} \notin \mathcal{H}_{1}$. By Lemma 3.3, we see that $\mathcal{P}_{1}^{*}\left(G_{1}\right)=\emptyset$. Let $P=$ $u_{n_{1}} u_{n_{1}-1} \cdots u_{1}$ be an optimal path at $e_{1}=u_{n_{1}} u_{n_{1}-1}$ in G_{1}. Then $N\left(u_{n_{1}}, G_{1}\right) \subseteq$ $\left\{u_{n_{1}-1}, u_{n_{1}-2}\right\}$. Say $\alpha\left(P, u_{1}\right)=r$. As $\delta_{1}\left(G_{1}\right) \geq\left(n_{1}+2\right) / 2$ and by Lemma 3.9, $u_{1} \cdots u_{r} u_{1}$ is an end-cycle at u_{r} in G_{1} and for each $j \in\{1, \ldots, r-1\}, G_{1}$ has a $u_{n_{1}}-u_{j} e_{1}$-hamiltonian path and $d\left(u_{j}, G_{1}\right) \geq\left(n_{1}+2\right) / 2$. Since $n_{2} \geq$ $d\left(u_{n_{1}}, G_{2}\right) \geq(n+4) / 2-d\left(u_{n_{1}}, G_{1}\right) \geq n / 2$, we obtain $n_{2} \geq n_{1}$. Note that $r-1 \geq\left(n_{1}+2\right) / 2$ and so $n_{1} \geq 6$.

By Property B, $\mathcal{P}_{2}^{*}\left(G_{2}\right) \neq \emptyset$. As $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$ and by Lemma 3.3, $G_{2} \in \mathcal{H}_{2}$. Thus $d\left(y, G_{2}\right) \geq\left(n_{2}+2\right) / 2$ for all $y \in V\left(G_{2}\right)-V\left(e_{2}\right)$. Let $v_{1} \cdots v_{n_{2}} v_{1}$ be a hamiltonian cycle of G_{2} with $e_{2}=v_{1} v_{2}$. Let $i, j \in\{1, \ldots, r-1\}$ with $i \notin$ $\{1, r-1\}$. By Lemma 3.10, $G_{1}-u_{i}$ has an $u_{n_{1}}-u_{j} e_{1}$-hamiltonian path. Clearly, $d\left(u_{n_{1}} u_{j}, G_{2}\right) \geq n+4-\left(n_{1}-1\right)=n_{2}+5$. Thus for some $s \in\left\{4, \ldots, n_{2}-1\right\}$, $d\left(v_{s}, u_{n_{1}} u_{j}\right)=2$ and so $G_{1}-u_{i}+v_{s} \in \mathcal{H}_{1}$. Thus $G_{2}-v_{s}+u_{i} \notin \mathcal{H}_{2}$. As $d\left(v_{s-1} v_{s+1}, G_{2}-v_{s}\right) \geq n_{2}+2-2=n_{2}$ and by Lemma 3.3, $G_{2}-v_{s} \in \mathcal{H}_{2}$. Let $C=w_{1} \cdots w_{t} w_{1}$ be an e_{2}-hamiltonian cycle of $G_{2}-v_{s}$ with $t=n_{2}-1$. As $d\left(u_{i}, G_{1}\right) \leq n_{1}-2, d\left(u_{i}, C\right) \geq(n+4) / 2-\left(n_{1}-2\right)-1 \geq 3$. As $C+u_{i} \notin \mathcal{H}_{2}$, we see that there are two distinct vertices u and v in C such that $\{u, v\} \cap V\left(e_{2}\right)=$ \emptyset and either $\left\{u^{+}, v^{+}\right\} \subseteq N\left(u_{i}\right)$ or $\left\{u^{-}, v^{-}\right\} \subseteq N\left(u_{i}\right)$. Say without loss of generality $\left\{u^{+}, v^{+}\right\} \subseteq N\left(u_{i}\right)$. As $G_{2}-v_{s}+u_{i} \notin \mathcal{H}_{2},[C]$ does not have a $u^{+}-v^{+}$ e_{2}-hamiltonian path. Clearly, $d(x, C) \geq\left(n_{2}+2\right) / 2-1=(t+1) / 2$ for all $x \in V(C)-V\left(e_{2}\right)$. Thus we may apply Lemma 3.6(d) to [C]. First, assume that $[C]$ has a vertex-cut X with $|X|=3$ and $V\left(e_{2}\right) \subseteq X$ such that each of the two components $[C]-X$ is isomorphic to $K_{(t-3) / 2}$. As $G_{2}-v_{s}+u_{i} \notin \mathcal{H}_{2}$, we see that $N\left(u_{i}, C\right)=X$. Thus $v_{s} x \in E$ for all $x \in V(C)-X$ as $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$. Let $v^{\prime} \in I\left(u_{n_{1}} u_{j}, C-X\right)$. Then $G_{1}-u_{i}+v^{\prime} \in \mathcal{H}_{1}$ and $G_{2}-v^{\prime}+u_{i} \in \mathcal{H}_{2}$ by Lemma 3.10, a contradiction. Therefore $V(C)$ has a partition $X \cup Y$ such that $|X|=(t+1) / 2, V\left(e_{2}\right) \subseteq X,|Y|=(t-1) / 2,\{u, v\} \subseteq Y$ and $N(y, C)=X$ for all $y \in Y$. As $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$, we obtain $Y \subseteq N\left(v_{s}\right)$. As $G_{2}-v_{s}+u_{i} \notin \mathcal{H}_{2}$, we see that $N\left(u_{i}, C\right) \subseteq X$. As $d\left(u_{n_{1}}, G_{1}\right) \leq 2$, we readily see that $d\left(u_{n_{1}}, Y\right)>0$. Let $v^{\prime} \in N\left(u_{n_{1}}, Y\right)$. Clearly, $d\left(v^{\prime}, G_{1}\right) \geq(n+4) / 2-\left(n_{2}+2\right) / 2=\left(n_{1}+2\right) / 2$. Thus $v^{\prime} u_{p} \in E$ for some $p \in\{1, \ldots, r-1\}$ with $p \neq i$. By Lemma 3.10, $G_{1}-u_{i}$ has a $u_{n_{1}}-u_{p} e_{1}$-hamiltonian path. With v^{\prime} and u_{p} in place of v_{s} and u_{j} in the above argument, we see that $V\left(G_{2}-v^{\prime}\right)$ has a partition $X^{\prime} \cup Y^{\prime}$ such that $\left|X^{\prime}\right|=(t+1) / 2, V\left(e_{2}\right) \subseteq X^{\prime},\left|Y^{\prime}\right|=(t-1) / 2, N\left(y, G_{2}-v^{\prime}\right)=X^{\prime}$ for all $y \in Y^{\prime}$, $Y^{\prime} \subseteq N\left(v^{\prime}\right)$ and $N\left(u_{i}, \bar{G}_{2}-v^{\prime}\right) \subseteq X^{\prime}$. Since $Y^{\prime} \neq Y$ and Y is an independent set, we see that $Y \subseteq X^{\prime} \cup\left\{v^{\prime}\right\}$. Thus $N\left(u_{i}, Y\right) \neq \emptyset$, a contradiction.

Proof of Lemma 2.2. On the contrary, say $d\left(x_{1}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$ and $d\left(y_{1}, G_{2}\right)$ $\leq\left(n_{2}+1\right) / 2$. Then $d\left(x_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$ and $d\left(y_{1}, G_{1}\right) \geq\left(n_{1}+3\right) / 2$. By Lemma 3.2(a), $G_{1}-x_{1}+y_{1} \in \mathcal{P}_{1}$ and $G_{2}-y_{1}+x_{1} \in \mathcal{P}_{2}$. By Property A, $\xi\left(x_{1}, y_{1}\right) \leq 0$. This implies that $d\left(x_{1}, G_{1}\right)=\left(n_{1}+1\right) / 2, d\left(x_{1}, G_{2}\right)=\left(n_{2}+3\right) / 2$,
$d\left(y_{1}, G_{2}\right)=\left(n_{2}+1\right) / 2, d\left(y_{1}, G_{1}\right)=\left(n_{1}+3\right) / 2$ and $x_{1} y_{1} \in E$. Since either $G_{1} \notin \mathcal{H}_{1}$ or $G_{2} \notin \mathcal{H}_{2}$, say without loss of generality $G_{1} \notin \mathcal{H}_{1}$. As $\delta_{1}\left(G_{1}\right)=$ $\left(n_{1}+1\right) / 2$ and by Lemma 3.3, $\mathcal{P}_{1}^{*}\left(G_{1}\right)=\emptyset$. Therefore $e_{1}=x_{n_{1}} x_{n_{1}-1}$ and $N\left(x_{n_{1}}, G_{1}\right) \subseteq\left\{x_{n_{1}-1}, x_{n_{1}-2}\right\}$. Thus $n_{2} \geq d\left(x_{n_{1}}, G_{2}\right) \geq(n+4) / 2-2$. This implies $n_{2} \geq n_{1}$.

By Property B, $\mathcal{P}_{2}^{*}\left(G_{2}\right) \neq \emptyset$. As $\delta_{2}\left(G_{2}\right)=\left(n_{2}+1\right) / 2$ and by Lemma 3.3, $G_{2} \in \mathcal{H}_{2}$. Then $d\left(y, G_{2}\right) \geq\left(n_{2}+1\right) / 2$ for all $y \in V\left(G_{2}\right)-V\left(e_{2}\right)$. Let $H_{1}=G_{1}-x_{1}$ and $H_{2}=G_{2}+x_{1}$. By Property A and Lemma 3.2(a) as above, we readily see that $H_{2}-y \in \mathcal{P}_{2}$, if $d\left(y, G_{2}\right)=\left(n_{2}+1\right) / 2$, then $y x_{1} \in E$, and so $d\left(y, H_{2}\right) \geq\left(n_{2}+3\right) / 2$ for all $y \in V\left(H_{2}\right)-V\left(e_{2}\right)$. Let $C=v_{1} v_{2} \cdots v_{t} v_{1}$ be a hamiltonian cycle of H_{2} with $t=n_{2}+1$ and $e_{2}=v_{1} v_{2}$. Let Y be the set of those vertices $y \in V\left(H_{2}\right)-V\left(e_{2}\right)$ such that $H_{2}-y \in \mathcal{H}_{2}$. Then $H_{1}+y \notin \mathcal{H}_{1}$ for all $y \in$ Y. For each $v_{s} \in V(C)-\left\{v_{1}, v_{2}, v_{3}, v_{t}\right\}, d\left(v_{s-1} v_{s+1}, C-v_{s}\right) \geq n_{2}+3-2=n_{2}+1$ and so $H_{2}-v_{s} \in \mathcal{H}_{2}$ by Lemma 3.3. Thus $V(C)-\left\{v_{1}, v_{2}, v_{3}, v_{t}\right\} \subseteq Y$. Since $\mathcal{P}_{1}^{*}\left(G_{1}\right)=\emptyset$ and $N\left(x_{n_{1}}, G_{1}\right) \subseteq\left\{x_{n_{1}-1}, x_{n_{1}-2}\right\}$, we see that $d\left(x_{2} x_{n_{1}}, H_{1}\right) \leq$ $n_{1}-2$. It follows that $d\left(x_{2} x_{n_{1}}, H_{2}\right) \geq n+4-\left(n_{1}-2\right)=t+5$. Consequently, $v_{s} \in I\left(x_{2} x_{n_{1}}, H_{2}\right)$ for some $v_{s} \in V(C)-\left\{v_{1}, v_{2}, v_{3}, v_{t}\right\}$ and so $H_{1}+v_{s} \in \mathcal{H}_{1}$, a contradiction.

Proof of Lemma 2.3. On the contrary, say that $G_{2} \in \mathcal{H}_{2}$. Then $y \in S_{2}\left(G_{2}\right)$ and so $d\left(y, G_{2}\right) \geq\left(n_{2}+2\right) / 2$ for all $y \in V\left(G_{2}\right)-V\left(e_{2}\right)$ and $G_{1} \notin \mathcal{H}_{1}$. As $d\left(x_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2, G_{2}+x_{1} \in \mathcal{H}_{2}$ by Lemma $3.2(\mathrm{f})$ and so $S_{2}\left(G_{2}+x_{1}\right)=$ $V\left(G_{2}+x_{1}\right)-V\left(e_{2}\right)$. By Property A and Lemma 3.2(a), we readily see that $d\left(y, G_{2}+x_{1}\right) \geq\left(n_{2}+3\right) / 2$ for all $y \in V\left(G_{2}\right)-V\left(e_{1}\right)$. Set $H_{1}=G-x_{1}$ and $H_{2}=G_{2}+x_{1}$. Let $A=\left\{v \in V\left(H_{2}\right)-V\left(e_{2}\right) \mid H_{2}-v \in \mathcal{H}_{2}\right\}$. Then $H_{1}+v \notin \mathcal{H}_{1}$ for each $v \in A$. Let $C=v_{1} v_{2} \cdots v_{n_{2}} v_{1}$ be a hamiltonian cycle of G_{2} with $e_{1}=v_{1} v_{2}$. Say $X_{0}=\left\{v_{n_{2}}, v_{1}, v_{2}, v_{3}\right\}$. We claim:
Claim 1. The following two statements hold:
(a) $V\left(H_{2}\right)-X_{0} \subseteq A$;
(b) If $d\left(v_{1}, H_{2}-X_{0}\right) \geq 1$, then $v_{n_{2}} \in A$ and if $d\left(v_{2}, H_{2}-X_{0}\right) \geq 1$, then $v_{3} \in A$.
Proof. Clearly, $x_{1} \in A$. Let $v_{i} \in V\left(G_{2}\right)-X_{0}$. Then $d\left(v_{i-1} v_{i+1}, G_{2}-v_{i}\right) \geq$ $\left(n_{2}+2\right)-2=\left(n_{2}-1\right)+1$ and by Lemma 3.3, $G_{2}-v_{i} \in \mathcal{H}_{2}$. Since $d\left(x_{1}, G_{2}-v_{i}\right) \geq$ $\left(n_{2}+3\right) / 2-1=\left(\left(n_{2}-1\right)+2\right) / 2, H_{2}-v_{i} \in \mathcal{H}_{2}$. Hence (a) holds.

To see (b), we just need show the first assertion by the symmetry. If $x_{1} v_{1} \in$ E, then $x_{1} v_{1} \cdots v_{n_{2}-1} \in \mathcal{P}_{2}\left(H_{2}-v_{n_{2}}\right)$ and $d\left(x_{1} v_{n_{2}-1}, H_{2}-v_{n_{2}}\right) \geq n_{2}+3-2=$ $n_{2}+1$. By Lemma 3.3, $H_{2}-v_{n_{2}} \in \mathcal{H}_{2}$. If $v_{1} v_{i} \in E$ for some $v_{i} \in V\left(G_{2}\right)-X_{0}$, then $v_{i-1} v_{i-2} \cdots v_{2} v_{1} v_{i} v_{i+1} \cdots v_{n_{2}-1} \in \mathcal{P}_{2}\left(G_{2}-v_{n_{2}}\right)$ and $d\left(v_{i-1} v_{n_{2}-1}, G_{2}-\right.$ $\left.v_{n_{2}}\right) \geq n_{2}$. As above, we see $H_{2}-v_{n_{2}} \in \mathcal{H}_{2}$. Hence (b) holds.

We now divide the proof of the lemma into the following two cases. Say $l=n_{1}-1$.
Case 1. $H_{1} \notin \mathcal{H}_{1}$.

Let $P=z_{1} \cdots z_{l}$ be an arbitrary path in $\mathcal{P}_{1}\left(H_{1}\right)$. Then $I\left(z_{1} z_{l}, A\right)=\emptyset$. Thus $d\left(z_{1} z_{l}, H_{2}\right) \leq n_{2}+5$ and so $d\left(z_{1} z_{l}, H_{1}\right) \geq l$. By Lemma 3.3, $d\left(z_{1} z_{l}, H_{1}\right)=l$ and $\sigma\left(P, e_{1}\right)>0$. Thus $d\left(z_{1} z_{l}, H_{2}\right)=n_{2}+5, X_{0}=I\left(z_{1} z_{l}, H_{2}\right), A=V\left(H_{2}\right)-X_{0}$ and $d\left(x, z_{1} z_{l}\right)=1$ for all $x \in A$. By Claim $1, N\left(v_{1} v_{2}, H_{2}\right) \subseteq X_{0}$. Then $n_{1}-1=l \geq d\left(v_{1}, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-d\left(v_{1}, G_{2}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-3$ and $d\left(x_{1}, G_{2}\right) \leq\left(n_{2}-2\right)$. As $d\left(x_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$, we see that $n_{2} \geq 7$. As $n_{2}-3 \geq d\left(v_{5}, G_{2}\right) \geq\left(n_{2}+2\right) / 2$, it follows that $n_{1} \geq n_{2} \geq 8$ and $d\left(x_{1}, H_{1}\right) \geq 4$.

We apply Lemma 3.5 to H_{1}. First, assume that $V\left(H_{1}\right)$ has a partition $X \cup Y$ such that $|X|=l / 2, V\left(e_{1}\right) \subseteq X$ and $N\left(y, H_{1}\right)=X$ for all $y \in Y$. Then every two distinct vertices in Y can play the role of z_{1} and z_{l}. Hence $d\left(x_{1}, Y\right) \geq l / 2-1 \geq 2$ and so $G_{1} \in \mathcal{H}_{1}$, a contradiction. Therefore $H_{1}-V\left(e_{1}\right)$ has two components J_{1} and J_{2} such that $H_{1}-V\left(e_{1}\right)=J_{1} \cup J_{2}$, each of J_{1} and J_{2} is complete and $d\left(x, H_{1}\right)=l-1$ for each $x \in V\left(e_{1}\right)$. Say without loss of generality $z_{1} \in V\left(J_{1}\right)$ and $d\left(z_{1}, H_{1}\right) \leq d\left(z_{l}, H_{1}\right)$. Then $d\left(z_{1}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$ and so $d\left(z_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$. Clearly, $G_{1}-z_{1} \in \mathcal{P}_{1}$ and $G_{1}-z_{1}$ has an $x_{1}-z_{l}$ hamiltonian e_{1}-path. Switching the roles of z_{1} and x_{1} in the above argument, we also obtain $X_{0}=I\left(x_{1} u, G_{2}+z_{1}\right)$. By Claim 1, $\left\{v_{3}, v_{n_{2}}\right\} \subseteq A$, a contradiction.
Case 2. $H_{1} \in \mathcal{H}_{1}$.
Let $L=u_{1} u_{2} \cdots u_{l} u_{1}$ be a hamiltonian cycle of H_{1} with $e_{1}=u_{1} u_{2}, B=$ $V\left(L-u_{1}\right)$ and $a=n_{2}+1-|A|$. If $a \geq 3$, then $N\left(v_{1}, H_{2}\right) \subseteq X_{0}$ or $N\left(v_{2}, H_{2}\right) \subseteq$ X_{0} by Claim 1. As $\delta_{2}\left(G_{2}\right) \geq\left(n_{2}+2\right) / 2$, it follows that $n_{2} \geq 6$ if $a \geq 3$. We divide this case into the following three subcases.
Subcase 2.1. $d^{*}\left(P, H_{1}\right) \geq l+2$ for all $P \in \mathcal{P}_{1}\left(H_{1}\right)$.
By Lemma 3.7, $d\left(x y, H_{1}\right) \geq l+2$ for all $x, y \in V\left(H_{1}\right)$ with $x \neq y$ and $x y \neq e_{1}$. By Lemma 3.6, for all $x, y \in V\left(H_{1}\right)$ with $x \neq y$ and $x y \neq e_{1}, H_{1}$ has an x - $y e_{1}$-hamiltonian path. Since $H_{1}+v_{i} \notin \mathcal{H}_{1}$ for all $v_{i} \in A$, we see that the following Claim 2 holds:

Claim 2. For each $v_{i} \in A$, if $d\left(v_{i}, H_{1}\right) \geq 2$, then $N\left(v_{i}, H_{1}\right)=V\left(e_{1}\right)$.
By Claim 2, $n_{2} \geq\left(n_{1}+n_{2}+4\right) / 2-d\left(v_{i}, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-2$ for all $v_{i} \in A$. Thus $n_{2} \geq n_{1}$. By Claim $2, d\left(v_{i}, B\right) \leq 1$ for all $v_{i} \in A$ and so $d(A, B) \leq|A|=n_{2}+1-a$. On the other hand, $d(A, B) \geq \sum_{u \in B} d(u, A) \geq$ $\sum_{u \in B}\left(\left(n_{1}+n_{2}+4\right) / 2-d\left(u, H_{1}\right)-a\right) \geq\left(n_{1}-2\right)\left(\left(n_{1}+n_{2}+4\right) / 2-\left(n_{1}-2\right)-a\right)$. Therefore $\left(n_{1}-2\right)\left(\left(n_{1}+n_{2}+4\right) / 2-\left(n_{1}-2\right)-a\right)-\left(n_{2}+1-a\right) \leq 0$. Denote the left side of this inequality by $f\left(n_{1}\right) / 2$ with $n_{2}=n-n_{1}$. Then $f\left(n_{1}\right)=$ $-2 n_{1}^{2}+(n+14-2 a) n_{1}+(-4 n-18+6 a) \leq 0$ for $4 \leq n_{1} \leq n / 2$. As $f^{\prime \prime}\left(n_{1}\right)<0$, $f\left(n_{1}\right) \geq \min \{f(4), f(n / 2)\}=\min \{6-2 a, 3 n-a n-18+6 a\}$. Thus $a \geq 3$ for otherwise $f\left(n_{1}\right)>0$. Thus $N\left(v_{1}, H_{2}\right) \subseteq X_{0}$ or $N\left(v_{2}, H_{2}\right) \subseteq X_{0}$. Say without loss of generality $N\left(v_{1}, H_{2}\right) \subseteq X_{0}$. Then $n_{1}-1 \geq d\left(v_{1}, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-3$ which implies that $n_{1} \geq n_{2}$. Let $v_{i} \in A-X_{0}$. Then $n_{2}-1 \geq d\left(v_{i}, H_{2}\right) \geq$ $\left(n_{1}+n_{2}+4\right) / 2-2$ which implies that $n_{2} \geq n_{1}+2$, a contradiction.
Subcase 2.2. $d^{*}\left(P, H_{1}\right) \geq l+1$ for all $P \in \mathcal{P}_{1}\left(H_{1}\right)$.

By the above subcase, $d^{*}\left(P, H_{1}\right)=l+1$ for some $P \in \mathcal{P}_{1}\left(H_{1}\right)$. Thus $d^{*}\left(P, H_{2}\right) \geq n_{1}+n_{2}+4-l-1=n_{2}+4$. As $d^{*}\left(P, v_{i}\right) \leq 1$ for all $v_{i} \in A$. Thus $d^{*}\left(P, v^{\prime}\right)=2$ and so $v^{\prime} \notin A$ for some $v^{\prime} \in\left\{v_{3}, v_{v_{2}}\right\}$. It follows that $a \geq 3$ and so $n_{2} \geq 6$. By Claim $1, N\left(v_{1}, H_{2}\right) \subseteq X_{0}$ and we may assume that $v_{n_{2}} \notin A$. As in the above paragraph, this implies that $n_{1} \geq n_{2}$. Let z be an arbitrary vertex in $A-X_{0}$. Then $n_{1}-1 \geq d\left(z, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-\left(n_{2}-1\right) \geq 3$. It is easy to see that there exist two distinct vertices u and w on L such that either $\left\{u^{-}, w^{-}\right\} \subseteq$ $N(z)$ and $e_{1} \notin\left\{u u^{-}, w w^{-}\right\}$or $\left\{u^{+}, w^{+}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u u^{+}, w w^{+}\right\}$. Say without loss of generality $\left\{u^{+}, w^{+}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u u^{+}, w w^{+}\right\}$. By Lemma 3.7, $d\left(x y, H_{1}\right) \geq l+1$ for all $\{x, y\} \subseteq V\left(H_{1}\right)$ with $x \neq y$ and $x y \neq e_{1}$. We claim that $d\left(x, H_{1}\right) \geq(l+1) / 2$ for all $x \in V\left(H_{1}\right)$. If this is false, say $d\left(x_{0}, H_{1}\right) \leq l / 2$ for some $x_{0} \in V\left(H_{1}\right)$. Then $d\left(x, H_{1}\right) \geq(l+2) / 2$ for all $x \in V\left(H_{1}-x_{0}\right)$ with $x_{0} x \neq e_{1}$ and $d\left(x_{0}, H_{2}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-l / 2 \geq\left(n_{2}+5\right) / 2 \geq 5$. Thus $d\left(x_{0}, A-X_{0}\right)>0$. It is easy to see that in the choices of the vertices u, w and z in the above, we can choose u, w and z such that $x_{0} \notin\{u, w\}$. Thus $d\left(u w, H_{1}\right) \geq l+2$ and by Lemma 3.6, H_{1} has a $u^{+}-w^{+} e_{1}$-hamiltonian path and so $H_{1}+z \in \mathcal{H}_{1}$, a contradiction. Hence $d\left(x, H_{1}\right) \geq(l+1) / 2$ for all $x \in V\left(H_{1}\right)$.

We now apply Lemma $3.6(\mathrm{~d})$ to H_{1} since H_{1} does not have a $u^{+}-w^{+} e_{1^{-}}$ hamiltonian path. First, assume that H_{1} has a vertex-cut X with $|X|=3$ and $V\left(e_{1}\right) \subseteq X$ such that $H_{1}-X=H_{1}^{\prime} \cup H_{1}^{\prime \prime}$, where H_{1}^{\prime} and $H_{1}^{\prime \prime}$ are isomorphic to $K_{(l-3) / 2}$. Then $N\left(z, H_{1}\right)=X$ as $H_{1}+z \notin \mathcal{H}_{1}$. As z is arbitrary in $A-X_{0}$, $N\left(A-X_{0}, H_{1}\right)=X$. It follows that $d(x, G) \leq(l+1) / 2+4<\left(n_{1}+n_{2}+4\right) / 2$ for $x \in V\left(H_{1}-X\right)$, a contradiction. Therefore $V\left(H_{1}\right)$ has a partition $X \cup Y$ such that $|X|=(l+1) / 2, V\left(e_{1}\right) \subseteq X,\{u, w\} \subseteq Y$, and $N\left(y, H_{1}\right)=X$ for all $y \in Y$. Clearly, $\left\{u^{+}, w^{+}\right\} \subseteq X$. Thus $N\left(z, H_{1}\right) \subseteq X$ as $H_{1}+z \notin \mathcal{H}_{1}$. Let $y \in Y$. As $d\left(y, A-X_{0}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-(l+1) / 2-4>0$, let $z^{\prime} \in N\left(y, A-X_{0}\right)$. With z^{\prime} in place of z in this argument, we see that $V\left(H_{1}\right)$ has a partition $X^{\prime} \cup Y^{\prime}$ such that $\left|X^{\prime}\right|=(l+1) / 2, V\left(e_{1}\right) \subseteq X^{\prime}, N\left(y^{\prime}, H_{1}\right)=X^{\prime}$ for all $y^{\prime} \in Y^{\prime}$ and $N\left(z^{\prime}, H_{1}\right) \subseteq X^{\prime}$. It follows that $Y^{\prime} \cap X \neq \emptyset$ and so $Y^{\prime} \subseteq X$. Thus $|X| \geq(l+1) / 2+1=(l+3) / 2$, a contradiction.
Subcase 2.3. For some $P \in \mathcal{P}_{1}\left(H_{1}\right), d^{*}\left(P, H_{1}\right) \leq l$.
For each $P \in \mathcal{P}_{1}\left(H_{1}\right)$, as $d^{*}(P, A) \leq|A|, d^{*}\left(P, H_{1}\right) \geq n_{1}+n_{2}+4-\left(n_{2}+1+\right.$ $a)=l+4-a \geq l$. Thus $a=4$ and by Claim $1, N\left(v, H_{2}\right) \subseteq X_{0}$ for $v \in\left\{v_{1}, v_{2}\right\}$. As before, it follows that $n_{1} \geq n_{2} \geq 6$. Let z be an arbitrary vertex in A. Then $d\left(z, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-\left(n_{2}-2\right) \geq 4$.

First, assume that there exists $P \in \mathcal{P}_{1}^{*}\left(H_{1}\right)$ such that $d^{*}\left(P, H_{1}\right)=l$. As $H_{1}+v \notin \mathcal{H}_{1}$ for all $v \in A$, it follows that $d^{*}(P, v)=1$ for all $v \in A$ and $d^{*}\left(P, X_{0}\right)=8$. Say $P=z_{1} z_{2} \cdots z_{l}$ with $d\left(z_{1}, P\right) \leq d\left(z_{l}, P\right)$. Then $d\left(z_{1}, P\right) \leq$ $l / 2, d\left(z_{1}, H_{2}\right) \geq\left\lceil\left(n_{1}+n_{2}+4\right) / 2\right\rceil-\lfloor l / 2\rfloor \geq 5$. Let $z_{c} \in\left\{z_{1}, z_{l}\right\}$ and $v_{b} \in A$ be such that $v_{b} z_{c} \in E$. We claim that $G_{2}+z_{c}-v_{j} \in \mathcal{H}_{2}$ for all $v_{j} \in V\left(G_{2}\right)-V\left(e_{2}\right)$. To see this, say $G_{2}+z_{c}-v_{j} \notin \mathcal{H}_{2}$ for some $v_{j} \in V\left(G_{2}\right)-V\left(e_{2}\right)$. Clearly, $v_{j-1} v_{j+1} \notin E$ otherwise $G_{2}+z_{l}-v_{j} \in \mathcal{H}_{2}$. First assume that $v_{j} \notin\left\{v_{3}, v_{n_{2}}\right\}$. Then $d\left(v_{j-1} v_{j+1}, G_{2}-v_{j}\right) \geq n_{2}+2-2=\left(n_{2}-1\right)+1$. This implies that $C-v_{j}$ has
an accessible edge e^{\prime} with $e^{\prime} \neq e_{2}$. Since $N\left(v_{1} v_{2}, G_{2}\right) \subseteq X_{0}$ and $d\left(z_{c}, X_{0}\right)=4$, it follows that $G_{2}-v_{j}+z_{c} \in \mathcal{H}_{2}$, a contradiction. Hence $v_{j} \in\left\{v_{3}, v_{n_{2}}\right\}$. Say without loss of generality $v_{j}=v_{3}$. Then $P^{\prime}=v_{4} \cdots v_{b} z_{c} v_{2} v_{1} v_{n_{2}} v_{n_{2}-1} \cdots v_{b+1}$ is an e_{2}-hamiltonian path of $G_{2}-v_{3}+z_{c}$ with $d\left(v_{4} v_{b+1}, G_{2}-v_{3}+z_{c}\right) \geq n_{2}$. As $d\left(v_{4}, e_{2}\right)=0$, this implies that P^{\prime} has an accessible edge $e^{\prime \prime}$ with $e^{\prime \prime} \neq e_{2}$ and so $G_{2}-v_{j}+z_{c} \in \mathcal{H}_{2}$, a contradiction. Hence this claim holds. Let $H_{1}^{\prime}=G_{1}-z_{c}$ and $H_{2}^{\prime}=G_{2}+z_{c}$. We claim that $H_{1}^{\prime} \notin \mathcal{P}_{1}$. To see this, say $H_{1}^{\prime} \in \mathcal{P}_{1}$. Then for any $Q \in \mathcal{P}_{1}\left(H_{1}^{\prime}\right)$ and $v \in V\left(H_{2}^{\prime}\right)-V\left(e_{2}\right), H_{1}^{\prime}+v \notin \mathcal{H}_{1}$ and so $d^{*}(Q, v) \leq 1$. Thus for any $Q \in \mathcal{P}_{1}\left(H_{1}^{\prime}\right), d^{*}\left(Q, H_{2}^{\prime}\right) \leq n_{2}+3$ and so $d^{*}\left(Q, H_{1}^{\prime}\right) \geq l+2$. Let $v_{j} \in A-\left\{x_{1}\right\}$. Then $d\left(v_{j}, H_{1}^{\prime}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-d\left(v_{j}, G_{2}\right)-d\left(v_{j}, z_{c}\right) \geq$ $\left(n_{1}+n_{2}+4\right) / 2-\left(n_{2}-3\right)-1 \geq 4$. By Lemma 3.6 and Lemma 3.7, we see that $H_{1}^{\prime}+v_{j} \in \mathcal{H}_{1}$, a contradiction.

Therefore $H_{1}^{\prime} \notin \mathcal{P}_{1}$. As $d\left(z_{1}, H_{1}\right) \leq\lfloor l / 2\rfloor, d\left(z_{1}, G_{2}\right) \geq\left\lceil\left(n_{1}+n_{2}+4\right) / 2\right\rceil-$ $\lfloor l / 2\rfloor-1 \geq 5$. The above argument implies that $H_{1}-z_{1}+x_{1} \notin \mathcal{P}_{1}$ and so $x_{1} z_{l} \notin E$. Thus $z_{1} x_{1} \in E$ and so $H_{1}-z_{l}+x_{1} \in \mathcal{P}_{1}$. Consequently, the above argument implies that $d\left(z_{l}, G_{2}\right)=d\left(z_{l}, X_{0}\right)=4$. Thus $d\left(x_{1} z_{l}, H_{1}-z_{1}\right) \geq$ $n_{1}+n_{2}+4-\left(n_{2}-2\right)-4-2=(l-1)+2$. By Lemma 3.2, $H_{1}-z_{1}+x_{1} \in \mathcal{P}_{1}$, a contradiction.

Therefore for each $P \in \mathcal{P}_{1}^{*}\left(H_{1}\right), d^{*}\left(P, H_{1}\right) \geq l+1$. Recall that $L=$ $u_{1} u_{2} \cdots u_{l} u_{1}$ is a hamiltonian cycle of H_{1} with $e_{1}=u_{1} u_{2}$. To apply Lemma 3.8, let us first assume that $d\left(u_{t}, H_{1}\right) \leq l / 2$ for some $u_{t} \in V(L)-V\left(e_{1}\right)$. If $4 \leq t \leq l-1$, then $d\left(u_{j}, H_{1}\right) \geq(l+2) / 2$ for all $3 \leq j \leq l$ with $j \neq t$. As $d\left(z, H_{1}\right) \geq 4$, it is easy to see that there exist two distinct vertices u and w on L with $u_{t} \notin\{u, w\}$ such that either $\left\{u^{-}, w^{-}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u^{-} u, w^{-} w\right\}$ or $\left\{u^{+}, w^{+}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u^{+} u, w^{+} w\right\}$. By Lemma 3.6, we see that $H_{1}+z \in$ \mathcal{H}_{1}, a contradiction. Hence $u_{t} \in\left\{u_{3}, u_{l}\right\}$. By Lemma 3.8, $d\left(u_{j}, H_{1}\right) \geq(l+2) / 2$ for all $5 \leq j \leq l-1$. To avoid the existence of u and w as above such that $H_{1}+z \in \mathcal{H}_{1}$, we see that $N\left(z, H_{1}\right)=\left\{u_{1}, u_{2}, u_{4}, u_{l-1}\right\}$. As z is an arbitrary vertex in A, we see that $d\left(u_{t}, A\right)=0$ and so $d\left(u_{t}, H_{2}\right) \leq 5$. Thus $d\left(u_{t}, H_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-5 \geq(l+1) / 2$, a contradiction.

Therefore $d\left(u_{j}, H_{1}\right) \geq(l+1) / 2$ for all $u_{j} \in V\left(H_{1}\right)-V\left(e_{1}\right)$. As $d\left(z, H_{1}\right) \geq 4$, there exist two distinct vertices u and w on C such that either $\left\{u^{-}, w^{-}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u u^{-}, w w^{-}\right\}$or $\left\{u^{+}, w^{+}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u u^{+}, w w^{+}\right\}$. Say without loss of generality $\left\{u^{+}, w^{+}\right\} \subseteq N(z)$ and $e_{1} \notin\left\{u u^{+}, w w^{+}\right\}$. We now apply word by word the argument in the last paragraph of Subcase 2.2 to H_{1} and H_{2} and a contradiction follows.

Proof of Lemma 2.4. As $\mathcal{P}_{2}^{*}\left(G_{2}\right)=\emptyset, N\left(v_{n_{2}}, G_{2}\right) \subseteq\left\{v_{n_{2}-1}, v_{n_{2}-2}\right\}$ and so $n_{1} \geq d\left(v_{n_{2}}, G_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-d\left(v_{n_{2}}, G_{2}\right)$. Thus $n_{1} \geq n_{2}$ and if $n_{1}=n_{2}$, then $N\left(v_{n_{2}}, G_{2}\right)=\left\{v_{n_{2}-2}, v_{n_{2}-1}\right\}$ and so $r \leq n_{2}-2$. Since $n_{2}-2 \geq r-1 \geq$ $\left(n_{2}+2\right) / 2$, we see that $n_{2} \geq 6$ and if $r \leq n_{2}-2$, then $n_{2} \geq 8$.

On the contrary, say that the lemma fails. Let $u_{0} \in V\left(G_{1}\right)-V\left(e_{1}\right)$ with $d\left(u_{0}, G_{1}\right)$ minimal be such that $G_{1}-u_{0} \in \mathcal{P}_{1}, G_{2}+u_{0} \in \mathcal{H}_{2}$ and $d\left(u_{0}, J^{*}\right)>0$. Let $v_{c} \in J^{*}$ with $u_{0} v_{c} \in E$. As $G_{2}+u_{0} \in \mathcal{H}_{2}$, we see that $u_{0} v_{n_{2}} \in E$ if
$v_{n_{2}} v_{n_{2}-2} \notin E$ and $d\left(u_{0}, v_{n_{2}} v_{n_{2}-1}\right) \geq 1$ if $v_{n_{2}} v_{n_{2}-2} \in E$. Thus we may assume without loss of generality that $u_{0} v_{n_{2}} \in E$. Let B be the set of all the vertices v_{i} in G_{2} such that $G_{2}-v_{i}+u_{0} \in \mathcal{H}_{2}$. By Lemma 3.10, $V(J)-\left\{v_{c}, v_{r}\right\} \subseteq B$, and if $d\left(u_{0}, J-v_{r}\right) \geq 2$, then $v_{c} \in B$. Set $H=G_{1}-u_{0}$ and $l=|H|=n_{1}-1$. We claim the following:

Claim A. If $d\left(u_{0}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$, then $r \in\left\{n_{2}-2, n_{2}-1\right\}$ and $B=$ $\left\{v_{1}, \ldots, v_{r-1}\right\}$. Moreover, for each $P \in \mathcal{P}_{1}(H)$ we have that $d^{*}\left(P, v_{i}\right) \leq 1$ for all $1 \leq i \leq r-1, d^{*}(P, H) \geq l$ and if $d^{*}(P, H)=l$, then $r=n_{2}-2$, $d^{*}\left(P, v_{n_{2}-2} v_{n_{2}-1} v_{n_{2}}\right)=6, d^{*}\left(P, u_{0}\right)=2$ and $d^{*}\left(P, v_{i}\right)=1$ for all $1 \leq i \leq r-1$.
Proof. Say $d\left(u_{0}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$. Then $d\left(u_{0}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$. As $G_{2}+u_{0} \in$ \mathcal{H}_{2}, for each $y \in V\left(G_{2}\right)-V\left(e_{2}\right), G_{2}-y+u_{0} \in \mathcal{P}_{2}$ and so if $G_{1}-u_{0}+$ $y \in \mathcal{P}_{1}$, then $\xi\left(u_{0}, y\right) \leq 0$ by Property A. Let y be an arbitrary vertex of $G_{2}-V\left(e_{2}\right)$. If $d\left(y, G_{2}\right) \leq\left(n_{2}+1\right) / 2$, then $d\left(y, G_{1}\right) \geq\left(n_{1}+3\right) / 2$ and so $G_{1}-u_{0}+y \in \mathcal{P}_{1}$ by Lemma 3.2(a). Consequently, $\xi\left(u_{0}, y\right) \leq 0$. This implies that $d\left(y, G_{2}\right)=\left(n_{2}+1\right) / 2$ and $u_{0} y \in E$. Therefore $d\left(y, G_{2}\right) \geq\left(n_{2}+1\right) / 2$ for all $y \in V\left(G_{2}\right)-V\left(e_{2}\right)$. Consequently, $r \in\left\{n_{2}-2, n_{2}-1\right\}$. As $d\left(u_{0}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$ and $r-1 \geq\left\lceil\left(n_{2}+2\right) / 2\right\rceil$, we see that $d\left(u_{0}, J-v_{r}\right) \geq\left\lceil\left(n_{2}+3\right) / 2\right\rceil-\left(n_{2}-r\right)-1 \geq 3$. By Lemma $3.10, B=\left\{v_{1}, \ldots, v_{r-1}\right\}$. Let P be an arbitrary path in $\mathcal{P}_{1}(H)$. Say u and w are the two endvertices of P. Then $I\left(u w, G_{2}\right) \cap B=\emptyset$, i.e., $d^{*}\left(P, v_{i}\right) \leq 1$ for all $i \in\{1, \ldots, r-1\}$. It follows that $d\left(u w, G_{2}\right) \leq n_{2}+3$ and if equality holds, then $r=n_{2}-2$ and $\left\{v_{n_{2}-2}, v_{n_{2}-1}, v_{n_{2}}\right\}=I\left(u w, G_{2}\right)$. Clearly, $d\left(u w, G_{1}\right) \geq n_{1}+n_{2}+4-\left(n_{2}+3\right)=l+2$ and so $d(u w, H) \geq l$. Claim A follows.

We now break into two cases here.
Case 1. $H \notin \mathcal{H}_{1}$.
Then $d^{*}(P, H) \leq l$ by Lemma 3.3 and so $d^{*}\left(P, G_{2}\right) \geq n_{1}+n_{2}+4-l-$ $d^{*}\left(P, u_{0}\right) \geq n_{2}+3$ for all $P \in \mathcal{P}_{1}(H)$. First, assume that $d\left(u_{0}, H\right) \leq\left(n_{1}+1\right) / 2$. By Claim A and Lemma 3.3, $r=n_{2}-2$ and for each $P \in \mathcal{P}_{1}(H), d^{*}(P, H)=$ $l, \sigma\left(e_{1}, P\right) \neq 0, d^{*}\left(P,\left\{u_{0}, v_{n_{2}-2}, v_{n_{2}-1}, v_{n_{2}}\right\}\right)=8$, and $d^{*}\left(P, v_{i}\right)=1$ for all $1 \leq i \leq r-1$. We apply Lemma 3.5(c) to H. First, assume that $V(H)$ has a partition $X \cup Y$ such that $|X|=l / 2, V\left(e_{1}\right) \subseteq X$ and $N(y, H)=X$ for all $y \in Y$. Then any two distinct vertices in Y can play the role of the two endvertices of P. Hence $d\left(v_{1}, Y\right) \geq l / 2-1 \geq 2$ and so $H+v_{1} \in \mathcal{H}_{1}$, a contradiction. Therefore $H-V\left(e_{1}\right)$ has exactly two components H_{1} and H_{2} such that both H_{1} and H_{2} are complete and $d\left(x, H_{1} \cup H_{2}\right)=l-2$ for each $x \in V\left(e_{1}\right)$. It follows that $V\left(H_{1} \cup H_{2}\right) \subseteq N\left(u_{0}\right)$. Thus $n_{1}-3 \leq d\left(u_{0}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$. This implies that $n_{1} \leq 7$. As mentioned in the beginning paragraph, we have $r=n_{2}-2$ and $n_{1} \geq n_{2} \geq 8$, a contradiction.

Therefore $d\left(u_{0}, H\right) \geq\left(n_{1}+2\right) / 2$. Let $P=z_{1} \cdots z_{l}$ be arbitrary in $\mathcal{P}_{1}(H)$ with $z_{1} \in S_{1}(H)$. We claim $d\left(z_{1}, G_{1}\right) \geq\left(n_{1}+2\right) / 2$. If this is not true, say $d\left(z_{1}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$. Then $d\left(z_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$. Clearly, $d\left(z_{1}, J\right) \geq$ $\left\lceil\left(n_{2}+3\right) / 2-\left(n_{2}-r\right)\right\rceil \geq 4$ as $r-1 \geq\left(n_{2}+2\right) / 2$ and so $d\left(z_{1}, J^{*}\right)>0$.

By Lemma 3.2(a), $G_{1}-z_{1}=H-z_{1}+u_{0} \in \mathcal{P}_{1}$. As $d\left(z_{1}, G_{1}\right)<d\left(u_{0}, G_{1}\right)$ and by the minimality of $d\left(u_{0}, G_{1}\right), G_{2}+z_{1} \notin \mathcal{H}_{2}$, i.e., $z_{1} v_{n_{2}} \notin E$ and if $v_{n_{2}} v_{n_{2}-2} \in E$, then $z_{1} v_{n_{2}-1} \notin E$. By Lemma 3.2(b), $G_{2}+z_{1} \in \mathcal{P}_{2}$. If $v \in S_{2}\left(G_{2}+z_{1}\right)$, then $d\left(v, G_{2}+z_{1}\right) \geq\left(n_{2}+3\right) / 2$ for otherwise $\xi\left(z_{1}, v\right)>0$, $d\left(v, G_{1}\right) \geq\left(n_{1}+2\right) / 2$ and $G_{1}-z_{1}+v \in \mathcal{P}_{1}$ by Lemma 3.2(a), contradicting (1). Let s be the maximal index such that $z_{1} v_{s} \in E$. Set $r^{\prime}=\max \{r, s\}$. By Lemma 3.9, for all $v \in\left\{z_{1}, v_{1}, \ldots v_{r^{\prime}-1}\right\}, d\left(v, G_{2}+z_{1}\right) \geq\left(n_{2}+3\right) / 2, N\left(v, G_{2}+\right.$ $\left.z_{1}\right) \subseteq\left\{z_{1}, v_{1}, \ldots, v_{r^{\prime}}\right\}$ and $G_{2}+z_{1}$ has a $v_{n_{2}}-v e_{2}$-hamiltonian path. Therefore $d\left(v, G_{2}\right) \geq\left(n_{2}+1\right) / 2$ for all $v \in\left\{v_{1}, \ldots, v_{r^{\prime}-1}\right\}$. It follows that $r^{\prime}=r$ or $r^{\prime}=r+1$. As $d\left(z_{1} z_{l}, G_{2}\right) \geq n_{2}+3, i\left(z_{1} z_{l}, J+v_{r^{\prime}}\right) \geq 3$. As $I\left(z_{1} z_{l}, B\right)=\emptyset$, we see that $I\left(z_{1} z_{l}, G_{2}\right)=\left\{v_{c}, v_{r}, v_{r+1}\right\}$. It follows that $d\left(z_{1} z_{l}, H\right)=l, N\left(z_{1} z_{l}, G_{2}\right)=$ $V\left(G_{2}\right), d\left(u_{0}, z_{1} z_{l}\right)=2, B=V(J)-\left\{v_{c}, v_{r}\right\}$ and $d\left(v_{i}, z_{1} z_{l}\right)=1$ for all $v_{i} \in B$. This argument implies that for any u-v path in $\mathcal{P}_{1}^{*}(H), d(u v, H)=l$ because $\min \{d(u, H), d(v, H)\} \leq l / 2$ and so $\min \left\{d\left(u, G_{1}\right), d\left(v, G_{1}\right)\right\} \leq\left(n_{1}+1\right) / 2$.

We now apply Lemma 3.5(c) to H. First, assume that $V(H)$ has a partition $X \cup Y$ such that $|X|=l / 2, V\left(e_{1}\right) \subseteq X$ and $N(y, H)=X$ for all $y \in Y$. Then any two distinct vertices in Y can play the role of the two endvertices of P. Hence $d\left(v_{i}, Y\right) \geq l / 2-1 \geq 2$ and so $H+v_{i} \in \mathcal{H}_{1}$ for each $v_{i} \in B$, a contradiction. Therefore $H-V\left(e_{1}\right)$ has exactly two components H_{1} and H_{2}. Say $z_{1} \in V\left(H_{1}\right)$ and $z_{l} \in V\left(H_{2}\right)$. Then z_{1} can be any vertex in H_{1} and z_{l} can be any vertex in H_{2} for the above argument. Consequently, $V\left(H_{2}\right) \subseteq N\left(v_{n_{2}}\right)$ and $V\left(H_{1} \cup H_{2}\right) \subseteq N\left(v_{c}\right) \cap N\left(u_{0}\right)$. Clearly, $G_{1}-x+v_{c} \in \mathcal{H}_{1}$ for any $x \in V\left(H_{2}\right)$. Let $v_{d} \in B-\left\{v_{c}\right\}$. If $x v_{d} \in E$ for some $x \in V\left(H_{2}\right)$, then $G_{2}-v_{c}+x \in \mathcal{H}_{2}$, a contradiction. Therefore $d\left(v_{d}, H_{2}\right)=0$ and so $N\left(v_{d}, H_{1}\right)=V\left(H_{1}\right)$. As $d\left(v_{d}, G_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-\left(n_{2}-2\right) \geq 4,\left|H_{1}\right| \geq 2$. As $V\left(H_{1} \cup H_{2}\right) \subseteq N\left(u_{0}\right)$, we see $G_{1}-z_{l}+v_{d} \in \mathcal{H}_{1}$. As $G_{2}-v_{d}$ has a $v_{n_{2}}-v_{c} e_{2}$-hamiltonian path, $G_{2}-v_{d}+z_{l} \in \mathcal{H}_{2}$, a contradiction.

Therefore $d\left(z_{1}, G_{1}\right) \geq\left(n_{1}+2\right) / 2$ and so $d\left(z_{1}, H\right) \geq(l+1) / 2$. Thus $\delta_{1}(H) \geq$ $(l+1) / 2$. As $H \notin \mathcal{H}_{1}$ and by Lemma 3.3, $\mathcal{P}_{1}^{*}(H)=\emptyset$ and so $e_{1}=z_{l} z_{l-1}$. As $d\left(u_{0}, H\right) \geq\left(n_{1}+2\right) / 2$ and by Lemma 3.2 (a), $H-z_{1}+u_{0} \in \mathcal{P}_{1}$. As $H \notin \mathcal{H}_{1}$, $d\left(z_{1} z_{l}, H\right) \leq l-1$ by Lemma 3.3. Choose P to be an optimal path at e_{1} in H. Say $t=\alpha\left(P, z_{1}\right)$. By Lemma 3.9, $C=z_{1} z_{2} \cdots z_{t} z_{1}$ is an end-cycle at z_{t} in H such that $d\left(z_{i}, C\right) \geq(l+1) / 2$ for all $i \in\{1,2, \ldots, t-1\}$. Thus for all $i \in\{1,2, \ldots, t-1\}$, each z_{i} can play the role of z_{1} in the above and so $d\left(z_{i}, G_{1}\right) \geq$ $\left(n_{1}+2\right) / 2$. Clearly, $d\left(u_{0}, C-z_{t}\right)>0$. Say without loss of generality $u_{0} z_{1} \in E$. As $\mathcal{P}_{1}^{*}(H)=0, N\left(z_{l}, G_{1}\right) \subseteq\left\{z_{l-1}, z_{l-2}, u_{0}\right\}$. Clearly, $d\left(z_{l}, J-v_{r}\right) \geq\left(n_{1}+n_{2}+\right.$ 4) $/ 2-3-\left(n_{2}-r+1\right)>0$. Recall that $u_{0} v_{n_{2}} \in E$. Therefore if we set $G^{\prime}=$ $G_{1}-V\left(e_{1}\right)+V\left(e_{2}\right)$ and $G^{\prime \prime}=G_{2}-V\left(e_{2}\right)+V\left(e_{1}\right)$, then $G^{\prime} \in \mathcal{H}_{2}$ and $G^{\prime \prime} \in \mathcal{H}_{1}$. Recall that if $z_{l} z_{l-2} \in E$, then $N\left(z_{l-1}, G_{1}\right) \subseteq\left\{z_{l}, z_{l-2}, u_{0}\right\}$ as $\mathcal{P}_{1}^{*}(H)=\emptyset$. We readily see that $d\left(e_{1}, G_{1}-V\left(e_{1}\right)\right) \leq l, d\left(e_{1}, G_{2}\right) \geq\left(n_{1}+n_{2}+4\right)-l-2=n_{2}+3$, $d\left(e_{2}, G_{2}-V\left(e_{2}\right)\right) \leq n_{2}-2$ and $d\left(e_{2}, G_{1}\right) \geq n_{1}+n_{2}+4-\left(n_{2}-2\right)-2=n_{1}+4$. Thus

$$
\begin{equation*}
e\left(G^{\prime}\right)+e\left(G^{\prime \prime}\right)=e\left(G_{1}\right)-d\left(e_{1}, G_{1}-V\left(e_{1}\right)\right)+d\left(e_{1}, G_{2}\right)+e\left(G_{2}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& -d\left(e_{2}, G_{2}-V\left(e_{1}\right)\right)+d\left(e_{2}, G_{1}\right)-2 d\left(e_{1}, e_{2}\right) \\
\geq & e\left(G_{1}\right)+e\left(G_{2}\right)+10-2 d\left(e_{1}, e_{2}\right) .
\end{aligned}
$$

As $10-2 d\left(e_{1}, e_{2}\right) \geq 2$ and by (1), we see that $n_{1}=\left|G^{\prime}\right| \neq n_{2}$. As $n_{1} \geq n_{2}$, $n_{1}>n_{2}$. As $N\left(z_{l}, G_{1}\right) \subseteq\left\{z_{l-2}, z_{l-1}, u_{0}\right\}$, we obtain that $n_{2} \geq d\left(z_{l}, G_{2}\right) \geq$ $\left\lceil\left(n_{1}+n_{2}+4\right) / 2-d\left(z_{l}, G_{1}\right)\right\rceil=n_{2}$. It follows that $N\left(z_{l}, G_{1}\right)=\left\{z_{l-2}, z_{l-1}, u_{0}\right\}$ and $d\left(z_{l}, G_{2}\right)=n_{2}$. As $H+v_{j} \notin \mathcal{H}_{1}$ for all $v_{j} \in B$, it follows that $z_{i} v_{j} \notin E$ for all $i \in\{1, \ldots, t-1\}$ and $v_{j} \in J-\left\{v_{c}, v_{r}\right\} \subseteq B$. Thus $d\left(z_{1}, G_{1}\right)+d\left(z_{1}, G_{2}\right) \leq$ $t+n_{2}-r+2$. Let $v \in J-\left\{v_{c}, v_{r}\right\}$. Then $d\left(v, G_{1}\right)+d\left(v, G_{2}\right) \leq l-t+2+r-1$. Consequently, $d\left(z_{1}\right)+d(v) \leq n_{1}+n_{2}+2$. But $d\left(z_{1}\right)+d\left(z_{2}\right) \geq n_{1}+n_{2}+4$ as $\delta(G) \geq\left(n_{1}+n_{2}+4\right) / 2$, a contradiction.
Case 2. $H \in \mathcal{H}_{1}$.
Let $C=z_{1} z_{2} \cdots z_{l} z_{1}$ be an e_{1}-hamiltonian cycle of H with $e_{1}=z_{1} z_{2}$. Let $v_{i} \in B$. With the details stated in the beginning paragraph, we see that $d\left(v_{i}, H\right) \geq\left\lceil\left(n_{1}+n_{2}+4\right) / 2\right\rceil-(r-1)-d\left(v_{i}, u_{0}\right) \geq 4$ and if equality holds, then $v_{i} u_{0} \in E, r \in\left\{n_{2}-2, n_{2}-1\right\}$ and $d\left(v_{i}, G_{2}\right)=r-1$. We divide this case into the following two subcases.
Subcase 2.1. For each path $P \in \mathcal{P}_{1}^{*}(H), d^{*}(P, H) \geq l+1$.
First, assume that $d(w, C) \leq l / 2$ for some $w \in V(C)-V\left(e_{1}\right)$. If $w \notin\left\{z_{3}, z_{l}\right\}$, then $d(x, C) \geq(l+2) / 2$ for all $x \in V(C-w)-V\left(e_{1}\right)$ by Lemma 3.8. As $d\left(v_{i}, C\right) \geq 4$ and $H+v_{i} \notin \mathcal{H}_{1}$, we readily see that there exist two distinct vertices z_{j} and z_{h} in $N\left(v_{i}, C\right)$ such that either $\left\{z_{j}^{-}, z_{h}^{-}\right\} \subseteq V(C)-\left\{z_{1}, z_{2}, w\right\}$ or $\left\{z_{j}^{+}, z_{h}^{+}\right\} \subseteq V(C)-\left\{z_{1}, z_{2}, w\right\}$. Consequently, by Lemma 3.6, H has a $z_{j}-z_{h}$ e_{1}-hamiltonian path and so $H+v_{i}$ is hamiltonian, a contradiction. Therefore $d\left(z_{j}, C\right) \geq(l+2) / 2$ for all $4 \leq j \leq l-1$. As above, $N\left(v_{i}, C\right)$ does not contain two distinct vertices z_{j} and z_{h} such that either $\left\{z_{j}^{-}, z_{h}^{-}\right\} \subseteq V(C)-\left\{z_{1}, z_{2}, z_{3}, z_{l}\right\}$ or $\left\{z_{j}^{+}, z_{h}^{+}\right\} \subseteq V(C)-\left\{z_{1}, z_{2}, z_{3}, z_{l}\right\}$. It follows that $N\left(v_{i}, C\right)=\left\{z_{1}, z_{2}, z_{4}, z_{l-1}\right\}$. The above argument allows us to conclude that $r \in\left\{n_{2}-2, n_{2}-1\right\}$, and for all $v \in B, N(v, H)=\left\{z_{1}, z_{2}, z_{4}, z_{l-1}\right\}$. As $V(J)-\left\{v_{c}, v_{r}\right\} \subseteq B, d\left(w, G_{2}\right) \leq 4$ and so $d(w, C) \geq\left(n_{1}+n_{2}+4\right) / 2-5 \geq(l+1) / 2$, a contradiction.

Therefore $d\left(z_{i}, H\right) \geq(l+1) / 2$ for all $i \in\{3, \ldots, l\}$. As $d\left(v_{i}, H\right) \geq 4$ and $H+v_{i} \notin \mathcal{H}_{1}$, there exist two distinct vertices u and v in $C-V\left(e_{1}\right)$ such that either $\left\{u^{+}, v^{+}\right\} \subseteq N\left(v_{i}\right)$ or $\left\{u^{-}, v^{-}\right\} \subseteq N\left(v_{i}\right)$. Say without loss of generality $\left\{u^{+}, v^{+}\right\} \subseteq N\left(v_{i}\right)$. Then H does not have a $u^{+}-v^{+} e_{1}$-hamiltonian path. We apply Lemma $3.6(\mathrm{~d})$ to H. First, assume that H has a vertex-cut X with $V\left(e_{1}\right) \subseteq X$ and $|X|=3$ such that $H-X$ has exactly two components isomorphic to $K_{(l-3) / 2}$ and $X \subseteq N(y)$ for all $y \in V(C)-X$. Obviously, $H+v_{i} \in \mathcal{H}_{1}$, a contradiction. Thus $V(H)$ has a partition $X \cup Y$ such that $|X|=(l+1) / 2,|Y|=(l-1) / 2,\left\{u^{+}, v^{+}\right\} \cup V\left(e_{1}\right) \subseteq X$ and $N(y, H)=X$ for all $y \in Y$. As $H+v_{i} \notin \mathcal{H}_{1}$, it follows that $N\left(v_{i}, H\right) \subseteq X$. Let $y \in Y$. Then $d\left(y, G_{2}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-(l+1) / 2-1=\left(n_{2}+2\right) / 2$. Thus $d(y, B)>0$. Let $v_{j} \in N(y, B)$. With v_{j} in place of v_{i} in the above argument, we see that $V(H)$ has a partition X^{\prime} and Y^{\prime} such that $\left|X^{\prime}\right|=(l+1) / 2, V\left(e_{1}\right) \subseteq X^{\prime}$,
$N\left(v_{j}, H\right) \subseteq X^{\prime}$ and $X^{\prime}=N\left(y^{\prime}, H\right)$ for all $y^{\prime} \in Y^{\prime}$. As Y is an independent set, it follows that $Y \subseteq X^{\prime}$ and so $\left|X^{\prime}\right| \geq(l-1) / 2+2=(l+3) / 2$, a contradiction. Subcase 2.2. There exists $P=z_{1} z_{2} \cdots z_{l} \in \mathcal{P}_{1}^{*}(H)$ such that $d\left(z_{1} z_{l}, H\right) \leq l$.

Then $d\left(z_{1} z_{l}, G_{2}\right) \geq n_{1}+n_{2}+4-l-d\left(u_{0}, z_{1} z_{l}\right) \geq n_{2}+3$ and so $i\left(z_{1} z_{l}, G_{2}\right) \geq 3$. Say $d\left(z_{1}, G_{1}\right) \leq d\left(z_{l}, G_{1}\right)$. Then $d\left(z_{1}, G_{1}\right) \leq l / 2+1=\left(n_{1}+1\right) / 2$. Thus $d\left(z_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$. As $r \geq \delta_{2}\left(G_{2}\right)+1 \geq\left(n_{2}+2\right) / 2+1, d\left(z_{1}, J-v_{r}\right) \geq$ $\left\lceil\left(n_{2}+3\right) / 2-\left(n_{2}-r\right)-1\right\rceil \geq 3$. Therefore $G_{2}+z_{1}$ has a hamiltonian path from e_{1} to z_{1}. We claim that $G_{1}-z_{1} \in \mathcal{P}_{1}$. If this is not true, then $d\left(u_{0}, P-z_{1}\right) \leq$ $(l-1) / 2$ by Lemma $3.2(\mathrm{a})$ and so $d\left(u_{0}, G_{1}\right) \leq(l+1) / 2$. By Claim A, it follows that

$$
\begin{align*}
d\left(z_{1} z_{l}, H\right) & =l, r=n_{2}-2 \\
I\left(z_{1} z_{l}, G_{2}\right) & =\left\{v_{n_{2}-2}, v_{n_{2}-1}, v_{n_{2}}\right\} \text { and } d\left(u_{0}, z_{1} z_{l}\right)=2 . \tag{3}
\end{align*}
$$

Therefore $G_{1}-z_{1} \in \mathcal{P}_{1}$. By the minimality of $u_{0}, d\left(u_{0}, G_{1}\right) \leq d\left(z_{1}, G_{1}\right) \leq$ $\left(n_{1}+1\right) / 2$. Therefore (3) still holds and $d\left(u_{0}, G_{1}\right) \leq\left(n_{1}+1\right) / 2$ in any case. Moreover, $d\left(u_{0}, J\right) \geq\left\lceil\left(n_{2}+3\right) / 2\right\rceil-\left(n_{2}-r\right) \geq 4$ and so $B=V(J)-\left\{v_{r}\right\}$ as mentioned in the paragraph above Claim A. As $r-1 \geq\left(n_{2}+2\right) / 2, n_{2} \geq 8$.

We claim that for each $\{u, v\} \subseteq V(J)-\left\{v_{r}\right\}$ with $u \neq v, G_{2}-\{u, v\}+$ $\left\{u_{0}, z_{l}\right\} \in \mathcal{H}_{2}$. To see this, we note that $u_{0} v_{n_{2}} v_{n_{2}-1} v_{n_{2}-2} z_{l} u_{0}$ is a cycle in G. Moreover, we have that for all $x \in V\left(J-\left\{u, v, v_{r}\right\}\right), d\left(x, J-\left\{u, v, v_{r}\right\}\right) \geq$ $\left(n_{2}+2\right) / 2-3=\left(\left(n_{2}-5\right)+1\right) / 2$ and so $J-\left\{u, v, v_{r}\right\}$ is hamiltonian connected. Clearly, for each $y \in\left\{u_{0}, z_{l}\right\} d\left(y, J-\left\{u, v, v_{r}\right\}\right) \geq\left\lceil\left(n_{2}+3\right) / 2\right\rceil-5 \geq 1$ as $n_{2} \geq 8$. Thus if $G_{2}-\{u, v\}+\left\{u_{0}, z_{l}\right\} \notin \mathcal{H}_{2}$, then $\left.d\left(y, J-\left\{u, v, v_{r}\right\}\right)\right)=1$ for each $y \in\left\{u_{0}, z_{l}\right\}$. Consequently, $n_{2} \leq 9$. As $\delta_{2}\left(G_{2}\right) \geq\left\lceil\left(n_{2}+2\right) / 2\right\rceil$, it follows that J is complete and obviously $G_{2}-\{u, v\}+\left\{u_{0}, z_{l}\right\} \in \mathcal{H}_{2}$, a contradiction. Hence the claim holds.

Therefore $H-z_{l}+u+v \notin \mathcal{H}_{1}$ for all $u, v \in V\left(J-v_{r}\right)$ with $u \neq v$. For each vertex $v \in V\left(J-v_{r}\right)$, it is easy to see that $u v \in E$ for some $u \in N\left(z_{1}, J-v_{r}\right)$ since $d\left(z_{1}, G_{2}\right) \geq\left(n_{2}+3\right) / 2$ and $d(v, J) \geq\left(n_{2}+2\right) / 2$. Therefore $d\left(z_{l-1}, J-\right.$ $\left.v_{r}\right)=0$ for otherwise $H-z_{l}+u+v \in \mathcal{H}_{1}$ for some $v \in N\left(z_{l-1}, J-v_{r}\right)$ and $u \in N\left(z_{1}, J-v_{r}\right)$ with $u v \in E$. Thus $d\left(z_{l-1}, H-z_{l}\right) \geq\left(n_{1}+n_{2}+4\right) / 2-5=$ $\left(n_{1}+n_{2}\right) / 2-3$. Let $u v \in E\left(J-v_{r}\right)$ with $u z_{1} \in E$. Clearly, $d\left(v, H-z_{l}\right) \geq$ $\left(n_{1}+n_{2}+4\right) / 2-(r-1)-2=\left(n_{1}-n_{2}\right) / 2+3$. Thus $d\left(v z_{l-1}, H-z_{l}\right) \geq(l-1)+2$. By Lemma 3.2(d), $H-z_{l}+v$ has an e_{1}-hamiltonian path from z_{1} to v and so $H-z_{l}+u+v \in \mathcal{H}_{1}$, a contradiction. This proves the lemma.

Proof of Lemma 2.5. Choose $v^{\prime} \in J^{*}$. Then $d\left(v^{\prime} v_{n_{2}}, G_{1}\right) \geq n_{1}+n_{2}+4-\left(n_{2}-\right.$ $1)=n_{1}+5$. Thus $i\left(v^{\prime} v_{n_{2}}, G_{1}\right) \geq 5$. By Lemma 2.4, $G_{1}-u \notin \mathcal{P}_{1}$ for all $u \in I\left(v^{\prime} v_{n_{2}}, G_{1}\right)-V\left(e_{1}\right)$. Therefore $G_{1} \notin \mathcal{H}_{1}$. By Property B, $\mathcal{P}_{1}^{*}\left(G_{1}\right) \neq \emptyset$. We claim $\delta_{1}\left(G_{1}\right) \leq\left(n_{1}-1\right) / 2$. To see this, say $\delta_{1}\left(G_{1}\right) \geq n_{1} / 2$. Choose any path from $\mathcal{P}_{1}^{*}\left(G_{1}\right)$ and then apply Lemma 3.5 (c) with this path in G_{1}. As $d\left(v_{n_{2}}, G_{1}\right) \geq\left(n_{1}+n_{2}+4\right) / 4-2=\left(n_{1}+n_{2}\right) / 2$, we see that G_{1} has an $x-y$ e_{1}-hamiltonian path such that $y \notin V\left(e_{1}\right), d\left(y, G_{1}\right)=n_{1} / 2$ and $y v_{n_{2}} \in E$. As
$d\left(y, G_{2}\right) \geq\left(n_{2}+4\right) / 2, d\left(y, J^{*}\right)>0$ and so $G_{2}+y \in \mathcal{H}_{2}$, contradicting Lemma 2.4.

Proof of Lemma 2.6. The statement (a) is evident by the definition of $\left(G_{2 i-1}\right.$, $\left.G_{2 i}\right)(1 \leq i \leq k)$. We show (b) by contradiction. Say on the contrary that $d\left(v, G_{2 i}\right) \leq\left(\left|G_{2 i}\right|+3\right) / 2$ for some $v \in S_{2}\left(G_{2 i}\right)$ and $i \in\{1, \ldots, k\}$. Let i be minimal. Then $d\left(v, G_{2 i-1}\right) \geq\left(\left|G_{2 i-1}\right|+1\right) / 2$ and so $G_{2 i-1}+v \in \mathcal{P}_{1}$ by Lemma 3.2(a). As $\mathcal{P}_{2}^{*}\left(G_{2 i}\right)=\emptyset, \mathcal{P}_{2}^{*}\left(G_{2 i}-v\right)=\emptyset$. By the maximality of $e\left(G_{2(i-1)-1}\right)+e\left(G_{2(i-1)}\right)$, we shall have

$$
\begin{align*}
& e\left(G_{2(i-1)-1}\right)+e\left(G_{2(i-1)}\right) \\
\geq & e\left(G_{2 i-1}+v\right)+e\left(G_{2 i}-v\right) \tag{4}\\
\geq & e\left(G_{2 i-1}\right)+e\left(G_{2 i}\right)-\left(\left|G_{2 i}\right|+3\right) / 2+\left(\left|G_{2 i-1}\right|+1\right) / 2
\end{align*}
$$

Let $P=v_{q} v_{q-1} \cdots v_{1}$ be an optimal path at $e_{2}=v_{q} v_{q-1}$ in $G_{2(i-1)}$, where $q=\left|G_{2(i-1)}\right|$. Say $\alpha\left(P, v_{1}\right)=r$. As $\delta_{2}\left(G_{2(i-1)}\right) \geq\left(\left|G_{2(i-1)}\right|+4\right)$ and $\mathcal{P}_{2}^{*}\left(G_{2(i-1)}\right)=\emptyset$, we see that $v_{1} v_{2} \cdots v_{r} v_{1}$ is an end-cycle at v_{r} in $G_{2(i-1)}$. As $d\left(w_{i-1}, G_{2(i-1)}\right) \geq\left(\left|G_{2(i-1)}\right|+5\right) / 2$ and $G_{2(i-1)}+w_{i-1} \notin \mathcal{H}_{2}$, we see that $\mathcal{P}_{2}^{*}\left(G_{2(i-1)}+w_{i-1}\right)=\emptyset$. By the maximality of $e\left(G_{2 i-1}\right)+e\left(G_{2 i}\right)$, we shall have

$$
e\left(G_{2 i-1}\right)+e\left(G_{2 i}\right)
$$

$$
\begin{align*}
& \geq e\left(G_{2(i-1)-1}-w_{i-1}\right)+e\left(G_{2(i-1)}+w_{i-1}\right) \tag{5}\\
& \geq e\left(G_{2(i-1)-1}\right)+e\left(G_{2(i-1)}\right)-\left(\left|G_{2(i-1)-1}\right|-1\right) / 2+\left(\mid G_{2(i-1)}+5\right) / 2
\end{align*}
$$

By (4) and (5), we see that

$$
e\left(G_{2(i-1)-1}\right)+e\left(G_{2(i-1)}\right)>e\left(G_{2(i-1)-1}\right)+e\left(G_{2(i-1)}\right),
$$

a contradiction.
Proof of Lemma 2.7. On the contrary, say the claim fails. Let $x_{0} \in V\left(G_{2 k-1}\right)$ such that $G_{2 k-1}-x_{0} \in \mathcal{P}_{1}, G_{2 k}+x_{0} \in \mathcal{H}_{2}$ and $d\left(x_{0}, R^{\prime}-\left\{y_{1}, y_{r-1}\right\}\right)>0$. Let $y_{c} \in V\left(R^{\prime}\right)-\left\{y_{1}, y_{r-1}\right\}$ with $x_{0} y_{c} \in E$. Since $G_{2 k}+x_{0} \in \mathcal{H}_{2}$ and $\mathcal{P}_{2}^{*}\left(G_{2 k}\right)=\emptyset$, either $x_{0} y_{t} \in E$ or $x_{0} y_{t-1} \in E$ with $y_{t} y_{t-2} \in E$. Say without loss of generality $x_{0} y_{t} \in E$.

Set $H=G_{2 k-1}-x_{0}$ and $p=|H|=s-1$. As $s \geq t$ and $t-1 \geq r$, for each $y \in V\left(R^{\prime}\right), d(y, H) \geq\left\lceil(s+t+4) / 2-(r-1)-d\left(y, x_{0}\right)\right\rceil \geq 3$.

Assume for the moment that for every $P \in \mathcal{P}_{1}(H), d^{*}(P, H) \geq p+2$ for each $P \in \mathcal{P}_{1}(H)$. By Lemma 3.3, $H \in \mathcal{H}_{1}$. By Lemma 3.7, $d(u v, H) \geq p+2$ for all $u, v \in V(H)$ with $u \neq v$ and $\{u, v\} \neq V\left(e_{1}\right)$. Let y_{i} and y_{j} be two distinct vertices of $R^{\prime}-y_{c}$ such that $\left\{y_{i}, y_{j}\right\} \neq\left\{y_{1}, y_{r-1}\right\}$ and $y_{i} y_{j} \in E$. Let C be an e_{1}-hamiltonian cycle of H. Then there is an orientation of C such that for some $u, v \in V(C)$ with $u \neq v$ and $V\left(e_{1}\right) \neq\{u, v\}$, we have $e_{1} \notin\left\{u u^{+}, v v^{+}\right\}$ and $\left\{y_{i} u^{+}, y_{j} v^{+}\right\} \subseteq E$. Let $y^{\prime} \in N\left(y_{r}, R^{\prime}-y_{c}\right)$ be such that $y^{\prime} \notin\left\{y_{i}, y_{j}\right\}$. By Lemma 3.6, H has a $u^{+}-v^{+} e_{1}$-hamiltonian path. Since Theorem B holds for R^{\prime}, R^{\prime} has two disjoint paths $P^{\prime \prime}$ and P^{\prime} such that $\left|P^{\prime \prime}\right|=n_{1}-p,\left|P^{\prime}\right|=$
$r-1-\left|P^{\prime \prime}\right|, P^{\prime \prime}$ is from y_{i} to y_{j} and P^{\prime} is from y^{\prime} to y_{c}. Thus $\left[H, P^{\prime \prime}\right] \in \mathcal{H}_{1}$ and $G_{2 k}-V\left(P^{\prime \prime}\right)+x_{0} \in \mathcal{H}_{2}$, i.e., G contains two required cycles, a contradiction.

Therefore $d^{*}(P, H) \leq p+1$ for some $P \in \mathcal{P}_{1}(H)$. Say $P=z_{1} \cdots z_{p}$. First, assume that $d\left(y_{i}, z_{1} z_{p}\right)>0$ for some $y_{i} \in V\left(R^{\prime}\right)-\left\{y_{1}, y_{r-1}, y_{c}\right\}$. Say without loss of generality $z_{1} y_{i} \in E$. Then $y_{i} z_{p} \notin E$. If there exists $z_{p} y_{j} \in E$ for some $y_{j} \in N\left(y_{i}, R^{\prime}\right)-\left\{y_{c}\right\}$, then we obtain the two required cycles as above. Therefore $z_{p} y_{j} \notin E$ for all $y_{j} \in N\left(y_{i}, R^{\prime}\right)-\left\{y_{c}\right\}$. Thus $d\left(z_{p}, R\right) \leq r-\left(d\left(y_{i}, R\right)-\right.$ 2) and so $d\left(z_{p}, G_{2 k}\right) \leq t-r+r-\left(d\left(y_{i}, R\right)-2\right)=t-d\left(y_{i}, R\right)+2$. As $d\left(y_{i}, R\right) \geq(t+4) / 2, d\left(z_{p}, G_{2 k}\right) \leq t / 2$. Therefore $d\left(z_{p}, H\right) \geq(s+t+4) / 2-$ $t / 2-d\left(z_{p}, x_{0}\right) \geq(s+2) / 2$. Similarly, if $z_{p} y_{1} \in E$, then $z_{1} y_{a} \notin E$ for each $y_{a} \in N\left(y_{1}, R^{\prime}-\left\{y_{r-1}, y_{c}\right\}\right)$. Consequently, $d\left(z_{1}, R\right) \leq r-\left(d\left(y_{1}, R\right)-3\right)$ and $d\left(z_{1}, G_{2 k}\right) \leq t-d\left(y_{1}, R\right)+3 \leq(t+2) / 2$. It follows that $d\left(z_{1}, H\right) \geq s / 2$ and so $d\left(z_{1} z_{p}, H\right) \geq s+1=p+2$, a contradiction. Therefore $z_{p} y_{1} \notin E$. Similarly, $z_{p} y_{r-1} \notin E$. Thus $N\left(z_{p}, R\right) \subseteq\left\{y_{r}, y_{c}\right\}$ and so $d\left(z_{p}, G_{2 k}\right) \leq t-r+2$. Let $y_{j} \in N\left(y_{i}, R^{\prime}\right)-\left\{y_{c}\right\}$. Then $d\left(z_{p} y_{j}, G_{2 k}\right) \leq t-r+2+r-1=t+1$. Thus $d\left(z_{p} y_{j}, H\right) \geq s+t+4-(t+1)-d\left(x_{0}, z_{p} y_{j}\right) \geq p+2$. By Lemma 3.2(d), $H+y_{j}$ has a $z_{1}-y_{j} e_{1}$-hamiltonian path and so $H+y_{i}+y_{j}$ has a y_{i} - $y_{j} e_{1}$-hamiltonian path. As above, we see that G contains two required cycles, a contradiction.

Therefore $N\left(z_{1}, R\right) \cup N\left(z_{p}, R\right) \subseteq\left\{y_{1}, y_{r-1}, y_{r}, y_{c}\right\}$ and so $d\left(z_{1} z_{p}, G_{2 k}\right) \leq$ $2(t-r)+8$. As $r \geq \delta_{2}\left(G_{2 k}\right)+1 \geq(t+6) / 2$, we get $d\left(z_{1} z_{p}, G_{2 k}\right) \leq t+2$. Therefore $p+1 \geq d\left(z_{1} z_{p}, H\right) \geq s+t+4-(t+2)-d\left(x_{0}, z_{1} z_{p}\right) \geq p+1$. This implies that $N\left(z_{1}, R\right)=N\left(z_{p}, R\right)=\left\{y_{1}, y_{r-1}, y_{r}, y_{c}\right\}, r=(t+6) / 2$ and $R \cong K_{(t+6) / 2}$. It follows that G contains two required cycles as above.

References

[1] S. Abbasi, Spanning cycles in dense graphs, Ph.D. thesis, Rutgers University, 1999.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[3] J. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), no. 2, 111-135.
[4] Y. Egawa, R. Faudree, E. Gyori, Y. Ishigami, R. Schelp, and H. Wang, Vertex-disjoint cycles containing specified edges, Graphs Combin. 16 (2000), no. 1, 81-92.
[5] M. H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), no. 2-3, 227-230.
[6] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959), 337-356.
[7] C. Magnant and K. Ozeki, Partitioning graphs into paths and cycles, J. Comb. 3 (2012), no. 2, 135-161.
[8] H. Wang, Covering a graph with cycles passing through given edges, J. Graph Theory 26 (1997), no. 2, 105-109.
[9] J. E. Williamson, Panconnected graph II, Period. Math. Hungar. 8 (1977), no. 2, 105-116.
Department of Mathematics
The University of Idaho
Moscow, Idaho, USA 83844
E-mail address: hwang@uidaho.edu

[^0]: Received May 24, 2013; Revised March 30, 2014.
 2010 Mathematics Subject Classification. 05C38, 05C70, 05C75.
 Key words and phrases. cycles, disjoint cycles, cycle coverings.
 This work is supported by NSA Grant H98230-08-1-0098.

