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DISJOINT CYCLES WITH PRESCRIBED LENGTHS AND

INDEPENDENT EDGES IN GRAPHS

HonG WANG

ABSTRACT. We conjecture that if £ > 2 is an integer and G is a graph
of order n with minimum degree at least (n + 2k)/2, then for any k

independent edges ej, ..., ex in G and for any integer partition n = nj +
<o+ mng with n; >4 (1 < i < k), G has k disjoint cycles C1,...,Cy
of orders ni,...,n, respectively, such that C; passes through e; for all

1 <1i < k. We show that this conjecture is true for the case k = 2. The
minimum degree condition is sharp in general.

1. Introduction

It is well known [9] that if a graph G of order n with minimum degree at
least (n + 2)/2, then for each edge e, G has a cycle of order I passing through
e for each 3 <[ < n. A set of graphs is said to be disjoint if no two of them
have any vertex in common. We ask this question: Given a graph G of order
n=mny+---+n, withn; >3 (1 <i<k)and k independent edges e, ..., e in
G, when does G have k disjoint cycles of orders ni, ..., ng, respectively, such
that C; passes through e; for each 1 < i < k? If the orders of the k cycles are
not restricted, a similar problem was proposed in [8]. It was conjectured that
for each integer k > 2, there exists ng(k) such that if G is a graph of order
n > no(k) and d(z) + d(y) > n + 2k — 2, then for any k independent edges
e1,...,ex of G, G has k disjoint cycles C1, ..., Cy covering all the vertices of G
such that C; passes through e; for all 1 < ¢ < k. This conjecture was confirmed
and completely solved by Egawa, Faudree, Gyori, Ishigami, Schelp and Wang
in [4]. Here we propose the following conjecture:

Conjecture A. Let k > 2 be an integer and let G be a graph of order n
with minimum degree at least (n + 2k)/2. Then for any k independent edges
e1,...,er in G and for any integer partition n =nqy+---+ng withn; >4 (1 <
1 < k), G has k disjoint cycles Cy,...,Cx of orders ny,...,ng, respectively,
such that C; contains e; for all 1 <i <k.
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To see the sharpness in general, we observe K, ok—_1))/2,(n—2(k—1))/2 T
Kj—1)- This graph has minimum degree (n + 2k)/2 — 1. Let ey,...,ex be
k independent edges such that ey, ..., ex—1 are taken from the clique Ky(_1).
Let n = ny +-- -+ ny be such that ng is odd. Then the graph does not contain
k required cycles.

In Conjecture A, the condition n; > 4 (1 < i < k) is necessary in general.
This can be demonstrated in the following example with n; = 3 (1 < i < k).
Choose positive integers a, b and k such that a > k/24+1,b > 2, k > a+band k—
b is even. Let K be the complete graph on V = {x1,y1,..., 2k, Yk, 21, - - - 5 2k }-
Let (V, E) be a graph of order 3k with V = {z1,v1,..., %k, Yk, 21, - - -, 2k } Such
that E = E(K) —{yizj |a+1<i<k, 1 <j<(k—0)/2} —{zizj |a+1<
1<k, (k—b)/24+1<j <k—>b}. This graph does not contain k disjoint
triangles containing & independent edges z;y; (1 < ¢ < k) since k — b > a
and a triangle containing a vertex of {z1,..., 25—} and an edge of {x;y; | 1 <
i < k} must contain an edge of {z;y; | 1 < i < a}. Its minimum degree is
min{2k — 1+ (k+b)/2,2k — 1+ a} > 5k/2.

Magnant and Ozeki [7] discussed similar questions about disjoint cycles with
approximately prescribed lengths and fixed edges where the condition on o2 (G)
is used.

If the k disjoint cycles are not required to pass through given edges, we have
El-Zahar’s conjecture [5]. The conjecture says that if G is a graph of order
n=mny+- - +n, with n; >3 (1 <i < k) and minimum degree at least
[n1/2] + -+ + [nk/2], then G contains k disjoint cycles of order ny,...,ng,
respectively. It was confirmed for the case k = 2 in [5]. Abbasi [1] announced
a solution of this conjecture for large n using regularity lemma.

In this paper, we prove Conjecture A for the case k = 2:

Theorem B. Let G be a graph of order n with minimum degree at least (n +
4)/2. Then for any two independent edges ey and es in G and for any integer
partition n = ny+ne with ny > 3 and ny > 3, G has two disjoint cycles C1 and
Cy of orders ny and na, respectively, such that e; € E(C1) and e € E(Cs).

We shall use terminology and notation from [2] except as indicated. Let G =
(V, E) be a graph. Let € V(G). Let H be a subset of V(G) or a subgraph of G.
We define N(z, H) = {u € N(x) | u belongs to H}. Let d(z, H) = |N(z, H)|.
If X is a subset of V(G) or a subgraph of G, define N(X,H) = U,N(x, H)
and d(X,H) =), d(x,H), where z runs over X. Clearly, if X and H do not
have any common vertex, then d(X, H) is the number of edges of G between
X and H. We also use [H] to denote the induced subgraph of G by the
vertices in H. For z,y € V(G), define I(zy,H) = N(z,H) N N(y,H) and
let i(xy, H) = |[I(xy, H)|. We use e(G) to denote |E(G)|. The order of G is
denoted by |G|.

A path from u to v is called a u-v path. If P is a path of G and v is an
endvertex of P, we use a(P,v) to denote the order of the longest u-v subpath
of P with uwv € E(G). Clearly, if a(P,v) > 3, then P + uv has a cycle of order
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a(P,v). Let w € V(G) (e € E(G), respectively). Let P = wjws ---w; be a
longest path starting at w = wy (e = wywa, respectively). We say that P is an
optimal path at w (e, respectively) in G if a(P’, z) < a(P, w;) for any longest
path P’ = xyxq--- a4 starting at w = x; (e = x122, respectively) in G. If
e € E(P), we define o(P,e) = min{|E(P1)|, |E(P2)|}, where P; and P; are the
two components of P — e. Thus if (P, e) = 0, then e is an end edge of P. For
an edge e € F(G), an e-path or e-cycle is a path or a cycle that passes through
e. If P is a u-v path, we define d*(P, H) = d(uv, H).

A cycle C of G is called an end-cycle at u € V(C) if N(z,G) C V(C) and
[C] has a u-x hamiltonian path for each z € V(C — u).

If C =21 2421 is a cycle of GG, we assume an orientation of C' is given
by default such that xs is the successor of 1. Then C|xz;, x;] is the x;-x; path
on C' along the orientation of C' and C'~[z;, x;] is the z;-z; path on C in the
direction against the orientation of C. Define C[z;,z;) = Clz;, x;] — x; and
C(z;,x;] = Clz;, x;]—x;. The predecessor and successor of ; on C' are denoted
by ;" and xj We will use similar definitions for a path.

Let P =x71---x; be a path of G. If {1241, 2¢2;} C F with 1 <i <¢—1,
we say that x;z; 11 is an accessible edge of P. Let C = ujus - - - uuq be a cycle
of G. Let u; and u; be two distinct vertices of C. For each e € E(C), if e
is an accessible edge of either Clu;,u;] or Cluj,u;], then we say that e is an
accessible edge of C' with respect to {u;, u;}.

2. Proof of Theorem B

In this section, we list Lemmas 2.1-2.7 and use them to prove the theorem.
The proofs of these lemmas are in Section 4. Let G = (V,E) be a graph
order n with §(G) > (n + 4)/2. Suppose, for a contradiction, that theorem
fails for G. Let G be a counter example with n minimal. Let n = nj + no
be an integer partition with n; > 3 and ny > 3 and let e; and ez be two
independent edges such that G does not contain two disjoint cycles of orders
n1 and ng passing through e; and es, respectively. For each X C V with
|1X| <3,00G—-X)>(n+4)/2—|X| > ((n—|X]|)+ 1)/2 and by Lemma
3.4, G — X is hamiltonian connected. If n; = 3 or no = 3, say n; = 3 and
e1; = xy, then x and y have a common neighbor z that is not an endverex of
ez because §(G) > (n+4)/2. Since G — {z,y, z} is hamiltonian connected, it
has a hamiltonian cycle passing through e,. Thus the theorem holds if ny = 3
or ng = 3. Therefore n; > 4, no > 4 and so n > 8.

For the sake of convenience, for each i € {1,2}, let P; be the set of all
the subgraphs of G which have e;-hamiltonian paths and H; the set of all
the subgraphs of G which have e;-hamiltonian cycles. Furthermore, for each
i€ {1,2} and J € P;, let P;(J) denote the set of all the e;-hamiltonian paths
of J and let P}(J) denote the subset of P;(J) such that a path P € P;(J)
belongs to P;(J) if and only if o(P,e;) > 1.



922 H. WANG

For each i € {1,2} and J € P;, let S;(J) be the set of all the vertices z
of J — V(e;) such that x is an end vertex of some P € P;(J) and let 6;(J) =
min{d(z,J) | z € S;(J)}.

As §(G) > (n+4)/2, G has a hamiltonian cycle containing both e; and es.
Thus G has two disjoint subgraphs G and G2 such that for each i € {1,2},
|G;| = n; and G; € P;. We choose G1 and G2 such that

(1) e(G1) + e(G2) is maximum.

Let P, = 21 -+ -2y, and Py = y; - - - yn, be two paths such that, P, € P1(Gy),
P, € PQ(GQ), T € Sl(Gl), Y1 € SQ(GQ), d(l‘l,Gl) = 51(G1) and d(yl,Gg) =
92(G2). For any = € V(G;) and y € V(G2), we use &(x,y) to denote d(z, G2) —
d(x, Gv) +d(y, G1) — d(y, G2) — 2d(x,y). Thus e(G1 —z+y)+e(G2 —y+x) =
e(G1) + e(Ga) + &(x,y). By (1), we readily obtain the following Property A
and Property B. The first one is evident.

Property A. Let z € V(G1) and y € V(Ga). If Gi —z +y € P; and
G2 —y+ x € Py, then £(z,y) <O0.

Property B. Either P;(G1) # 0 or P5(Gs) # 0.

Proof. Say P;(G1) = 0 and P (G2) = (. Then e; = xy, —1%pn, and N(z,,,G1)
C {xp,-1,%n,—2}. Thus ng > d(zn,,G2) > (n1 +na +4)/2 -2 = (ng +
ng)/2 and so my > ny. Similarly, n; > (n1 + ne)/2. Tt follows that ny =
n2, N(znlaGl) = {zn1*27$n1*1} and N(yanQ) = {yn272ayn2*1}' Thus
N(e1,G1) = {&n,—2,Tn, -1, Tn, } and N(e2,G2) = {Yn,—2,Yny—1, Yn, }. Conse-
quently, G1 — V(e1) + V(e2) € P2, Go — V(ea) + V(er) € P1, e(G1 — V(er) +
V(ez)) + e(G2 — V(e2) + V(e1)) > e(G1) + e(G2). This contradicts (1). O

To reach a contradiction, we will investigate the structure of G; and Gq
which lead us to construct a sequence (G1,G2), (G3,G4),. .., (Gak—1,Gax) of
pairs of disjoint subgraphs of G. This will be accomplished by seven lemmas.
Lemmas 2.1-2.6 are the steps to Lemma 2.7 and we use Lemma 2.7 to show
that the sequence yields a contradiction.

Lemma 2.1. Either d(z1,G1) < (n1+1)/2 or d(y1,G2) < (n2 +1)/2.
Lemma 2.2. Either d(z1,G1) > (n1 +2)/2 or d(y1,G2) > (n2 +2)/2.

By Lemma 2.1 and Lemma 2.2, we may assume without loss of generality
that d(z1,G1) < (n1+1)/2 and d(y1, G2) > (n2+2)/2,1.e., 531(G1) < (n1+1)/2
and 02(G2) > (ng + 2)/2. Clearly, d(z1,G2) > (n2 + 3)/2.

Lemma 2.3. G5 ¢ Ho.
By Lemma 2.3, Go & Ha. As 62(G2) > (n2 + 2)/2 and by Lemma 3.3,

Pi(G3) = 0. Let P = vp,vp,—1---v1 be an optimal path of Gy at es =
VUnyUna—1- Say a(Pv1) =r. As Go & Ha, 7 < ng — 1. As 62(G2) > (n2 +2)/2
and by Lemma 3.9, J = vivs---v,v1 is an end-cycle at v, in G5 such that
d(vi,J) > (ne +2)/2 for all i € {1,...,7 —1}. Let J* = {va,vs,...,0r_2}.
Clearly, r > (no +2)/2+ 1= (ng +4)/2.
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Lemma 2.4. There exists no u € V(G1) — V(e1) such that G1 —u € Py,
G2+ u € Ha and d(u, J*) > 0.

Lemma 2.5. 6;(G1) < (n1 —1)/2.

Let wy, € Sl(Gl) with d(wl,Gl) = 51(G1) Then d(wl,Gg) Z (n1 + no +
4)/2—(n1—1)/2 = (n2+5)/2. Clearly, d(wy,J) > (n2+5)/2— (n2—1) > 9/2.
Thus d(wy, JJ*) > 0. By Lemma 2.4, G2 +w; € Ho. This implies that wyv,, &
E and if v,,vn,—2 € E, then wyvy,,—1 € E. Hence P;(G2 + w1) = 0. For each
v € So(Ga +wy), if d(v,Ga +w1) < (n2+4)/2, then d(v,G1 —w1) > n1/2 and
so G1 —wi +v € Py by Lemma 3.2(a). But e(G1 — w1 +v) +e(Ga+wy —v) >
e(G1) + e(G2), contradicting (1). Hence d2(G2 + w1) > (n1 + 5)/2. In the
meantime, we see that no — 1 > [(n2 + 5)/2]. Thus ny > 7. With G1 — w;
and Go 4+ wi, this argument also implies the existence of the following two
subgraphs G3 and Gj.

Let G3 and G4 be two disjoint subgraphs of G with e(G3) + e(G4) maximal
such that |G3| =n;—1, |G4| =ng+1, Gs € P, G4 € Py and P;(G;Q = 0. By
the above argument, e(G3)+e(Gy4) > e(G1)+e(Ga)— (n1—1)/24 (n2+5)/2. If
d(v,Gq) < (|G4| + 3)/2 for some v € S3(Gy), then d(v, G3) > (|G3| +1)/2 and
e(Gs+v) +e(Gy—v) > e(G1) + e(G2). This contradicts (1) since Gz +v € Py
by Lemma 3.2(a). Thus d2(G4) > (n2 +5)/2 = (|G4| +4)/2. This argument is
the key for a generalization leading to the following definition and the proofs
of Lemma 2.6 and Lemma 2.7.

Let k > 2 be the largest integer such that there exist a sequence (G, G2),
(G3,Gy), ..., (Gog—1,Gar) of disjoint pairs of subgraphs of G such that for each
1e€{l,....k—1}, Goi—1 € P1, Go; € Pa, P5(Ga;) = 0 and there exists w; €
Sl(GQifl) such that 51 (Ggifl) = d(wz, Ggifl) S (|G2i,1| - 1)/2, d(wz, GQz) Z
(|IGai| + 5)/2 and Go; + w; € Ho. Moreover, for each i € {1,...,k — 1},
€(G2i+1) + €(G2i+2) is maximal such that |G2i+1| = |G2i_1| — 1, |G2i+2| =
|Gai| +1, Gait1 € P1, Goira € P and P3(Gaita) = 0. By the above argument,
k is well defined.

Lemma 2.6. The following two statements hold:
(a) For each i € {1,...,k}, |Goim1] =n1 —i+1 and |Gai| =ng + 1 — 1.
(b) For each i € {1, Ceey k}, 52(G21) > (|G21| + 4)/2

Say s = |Gog—1] and |Gar| =t. Asng > 7,t > 8. By Lemma 2.6, d2(Gar) >
(t+4)/2. Let L = yys—1---y1 be an optimal path at es = yyp—1 in Goy.
Say r = a(L,y1). Then r > §3(Ga)+1 > [(t+4)/2+ 1] = [(t+6)/2] > 7.
As P3(Gog) =0, r <t—1. Let R = [y1,y2,..-,¥ and R’ = R —y,. By
Lemma 2.6 and Lemma 3.9, y1ys - - - y,y1 is an end-cycle at y, in Go and so
§(R') > (t+4)/2—1> (JR'|+4)/2. By the minimality of |G|, Theorem B holds
for R'. Note that R’ — {z,y} is hamiltonian connected for all {z,y} C V(R’)
by Lemma 3.4. Clearly, s > d(yi, Gok—1) > (s +t+4)/2 —2 = (s +t)/2. This
implies that s > t and if equality holds, then N(y:, Gar) = {y+—1,y:—2} and
r<t-—2.
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Lemma 2.7. For no x € V(Gag—-1), Gak—1 —x € P1, Go, + x € Ho and
d(z, R = {y1,yr-1}) > 0.

To prove Theorem B, let y. € V(R — {y1,yr—1}). Then d(y.y:, Gor—1) >
s+t+4—(t—1) = s+5 and 80 i(ycys, Gog—1) > 5. By Lemma 2.7, Gop—1—x € Py
for all x € I(ycyt,GQk_l) and so Gogp—1 &€ Hi. If 51(G2k_1) < (S — 1)/2, let
wg € Sl(GQkfl) with d(’u}k,GQk,l) = 51(G2k,1). As d(wk,GQk) > (t + 5)/2,
d(wg, R —{y1,yr-1}) > 1. By Lemma 2.7, Gor, +wy, & Ha. Thus wiy: ¢ E and
if yyys—o € E, then wry;—1 € E. Therefore Pj(Gar + wg) = 0. This allows us
to define (Gag+1,Gok+2) to lengthen the sequence (G1,Ga), ..., (Gak—1, Gak).
This contradicts the maximality of k. Therefore §1(Gar—1) > s/2. Recall that

d(ye, Gak—1) > (s+1t)/2. If P{(Gaxr—1) # 0, then by Lemma 3.5(c), we see that
Gok—1 has a u-v ej-hamiltonian path such that v & V(ey), d(v, Gog—1) = s/2
and vy, € E. As d(v,Goi) > (t +4)/2, d(v,R" — {y1,yr—1}) > 0 and so
Gor + v € Ha, contradicting Lemma 2.7. Therefore P;(Gar—1) = 0. Let
P =z525_1---21 be an optimal path at e; = z,25_1 in Gag—1. Say a(P, z1) = q.
As d(z5,Gag—1) < 2, t > d(25,Gax) > (s+t+4)/2—2 and so t > s. Since
s > t, it follows that s = ¢t and d(zs,Gar) = t = d(ys, Gak—1). By Lemma
2.7, we see that d(z;, R — {y1,yr—1}) = 0 for all i € {1,...,¢q — 1}. Then
t+2<d(y.,G) <r—1+d(ye,Gop—1) <r—1+t—q+1=t+r—gq. Thus
r—q>2. Thent+2<d(z,G) <q—1+d(21,Go) <qg—14+t—r+3<t a
contradiction. This proves the theorem.

3. Auxiliary lemmas

In the following, G = (V, E) is a graph. We will use the following lemmas.
Lemma 3.1 is an easy observation.

Lemma 3.1. Let P = x1---x, be a path of order r in G. Let u and v be two
vertices of G=V (P). Suppose that d(uv, P) > r+1 and {uz;t1,vx;} € E for all
1€{l,...,r—1}. Then d(uv, P) =r+1 and {uzi,vx,} C E. Moreover, either
N(u,P) = {x1,...,24} and N(v,P) = {xq,..., 2.} for some a € {1,...,r},
or d(z;,uv) =0 for some 1 <i <.

Lemma 3.2. Let P be a u-v path of order r in G, e € E(P) and x € V(G) —
V(P). The following five statements hold:

) If d(x, P ) > /2, then P+ x has an e-hamiltonian path.
) If d(x,P) > (r+1)/2, P+ x has an e-hamiltonian path ending at v.
) If d(:z:, P) (r+2)/2, then P+ x has a u-v e-hamiltonian path.
) If d(zv, P) > r + 2, then [P + ] has a u-x e-hamiltonian path.

e) If d(xzv, P) > r+ 1, then [P + ] has an e-hamiltonian path.

f) Ifd(z, P) >

cycle.

CSIOROED

(r+1)/2 and uwv € E, then P+uv+x has an e-hamiltonian

Proof. Let P; and P» be the two components of P—e with v in Ps. If d(z, ) = 2
for some f € E(P — e), then (a), (b) and (c) hold. So if one of (a), (b)
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and (c) fails, then d(x, f) < 1 for all f € E(P) — {e}. This implies that
d(z, P;)) < (|P;| +1)/2 for i € {1,2} and so d(z, P) < (r + 2)/2. Furthermore,
for each i € {1,2}, if d(z, P;) = (|P;| + 1)/2, then |P;| is odd and z is adjacent
to the two endvertices of P; and so the first three statements follow.

If one of (d) and (e) fails, then {vz,zz%} € E for each z € V(P) with
2zt # e. This implies that d(zv, P) < r + 1. So (d) holds. Obviously, (e)
would hold if uv € E or d(z,uv) > 0. To see (e), say uv € E and d(x,uv) = 0.
Then apply (d) to P — u and z.

To obtain (f), we see that there exists an edge ¢’ on P+ uv with €’ # e such
that d(z,e’) = 2. O

Lemma 3.3. Let P be a u-v path of order r > 3 in G. Let e € E(P). Suppose
that d(uv, P) > r+ € where e =0 if 6(P,e) =0 and e = 1 if o(P,e) > 0. Then
[P] has an e-hamiltonian cycle.

Proof. If uv € E, nothing to prove. So assume uwv ¢ E. Then the condition
implies that some edge f € E(P) — {e} is an accessible edge and this yields a
required cycle. (I

Lemma 3.4 ([3]). If H is a graph of order r > 3 and d(xy, H) > r+1 for each
pair x and y of nonadjacent vertices of H, then H is hamiltonian connected
and so for each e € E(H), H has an e-hamiltonian cycle.

Lemma 3.5. Let P = x1---x, be a path of order r > 3 in G. Let e € E(P).
Suppose that [P] does not have an e-hamiltonian cycle and d(xyx,, P) > r. Let
R={z; | d(z;,z12,) = 0,1 <i <7} and P be the set of all the components of
P—RU{z1,z,} —e. Then o(e,P) >0, d(z12,, P) = r and the following three
statements hold:
(a) RU{z1,2,} is an independent set;
(b) d(z;,P") <1 for all z; € R and P’ € P;
(¢) If d*(L, P) > r for every e-hamiltonian path L of [P] with o(L,e) > 0,
then either V(P) has a partition X UY such that | X| =r/2, V(e) C X,
Y =RU{a1,2,} and N(y,P) = X for ally € Y, or [P] — V(e) has
two complete components Hy and Hy such that |Hy|+ |Hz| =7 —2 and
V(Hy; U H) C N(z) for each x € V(e).

Proof. By Lemma 3.3, o(e, P) > 0 and d(x1x,, P) = r. Clearly, |P| < |R| + 2
and [P+ |R| < Y picp | P'|+|R| <7 —2. Say e = 2,7411. Since [P] does not
have an e-hamiltonian cycle, each x;x;11 with ¢ # a is not an accessible edge of
P. By Lemma 3.1, d(z12,, P') <|P'| + 1 for each P’ € P. Thus d(z12,, P) <
(r—=2)—|R|+|P| < r. It follows that |P| = |R|+2 and d(z12,, P') = |P'|+1 for
each P’ € P. Consequently, {z2,Za,Tat1,Tr—1}+ N R =0, R does not contain
two consecutive vertices of P, and for each P’ = P[z;,xz;] € P there exists
i <k < jsuch that N(zq1,P’) = {z;,..., 2} and N(x,, P") = {zk,...,z;}. In
particular, {x12441,2,2,} C E. Tt is easy to see that R is an independent set
for otherwise [P] has an e-hamiltonian cycle. So (a) holds.
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To see (b), say d(x;,P’) > 2 for some z; € R and P’ = Plz;,z;] € P
Let x € V(P') be such that N(xy,P") = {a;,...,2x} and N(z,, P’)
{zk,...,z;}. Say without loss of generality that [ < i. Let x, € V(P’) be
such that x;x, € E and p # ¢. If p <k, then

21 Plx1, 11| P [z, xp|i PlTiq1, Tp_1]T1
is an e-hamiltonian cycle of [P] and if p > k, then
x1 Py, @i Play, 0| P~ [2p—1, 2ig1]an

is an e-hamiltonian cycle of [P], a contradiction. Hence (b) holds.

To see (c), it is easy to observe that for each xz; € R, [P] has an -
x; e-hamiltonian path and an x,-z; e-hamiltonian path. If R # 0, then
d(zjx1,P) > r, d(xjz,, P) > r and so d(x;, P) > r/2 for each x; € R. Since
|P| = |R| + 2 and |P|+ |R| < r — 2, it follows that |P| = r/2 and |P'| = 1
for all P/ € P. Thus X UY with Y = RU{zy,2,} and X = V(P) - Y is
a partition of V(P) satisfying (c). Next, assume that R = 0. Let 2 < b < a
and a +1 < ¢ < r —1 be such that N(z1,P) = {x2,..., 2} U{Zat1,...,2c}
and N(x,,P) = {zp,..., 2o} U{xc,...,2r—1}. Then we readily see that for
each z; € N(z1, P) — {xp, Ta, Tat1, 2} and x; € N(zp, P) —{xp, Ta, Tat1, T},
[P] has an z;-z, e-hamiltonian path, an z;-z; e-hamiltonian path, an z;-
x; e-hamiltonian path and so z;x; ¢ E. It follows that N(x;, P) U {z;} =
N(z1,P)U{x1} and N(z;, P)U{x;} = N(z,, P)U{x,} for all x; € N(z1,P)—
{zv, Ta, Tat1, 2} and x; € N(zp, P) — {xp,Ta, Tat1,Zc}. Thus if b < a, then
1P~ [xe, Tp41) P~ [Tr, Xer1] P~ [xp, 1] is an e-hamiltonian cycle of [P], a con-
tradiction. Hence b = a. Similarly, ¢ = a + 1. This proves (c). O

Lemma 3.6. Let C be a cycle of order r in G. Let u and v be two dis-
tinct vertices on C and e an edge of C with e & {uut,vvT} = 0. Set R =
{z | d(z,uv) = 0,z € V(C) — {u,v}}. Let P be the set of all the components
of C — (RU{u,v}) —e. Suppose that d(uv,C) > r+ 1 and [C] does not have
a wt-vt e-hamiltonian path. Then d(uv,C) = r + 1 and the following four
statements hold:

(a) Each edge of C — e is inaccessible on C' with respect to {u,v};

(b) V(e)N (RU{u,v}) =0, d(uv, P) = |P|+1 for all P € P and |P| =
|R| + 3.

(¢) R is an independent set and d(x, P) <1 for allxz € R and P € P.

(d) Ifd(z,C) > (r+1)/2 for all z € V(C) =V (e), then r is odd. Moreover,
either [C] has a vertex-cut X with V(e) C X and |X| = 3 such that
[C] has exactly two components isomorphic to K35 and X C N(y)
forally e V(C)— X, or V(C) has a partition X UY such that | X| =
(r+1)/2,|Y|=(r—1)/2,Y = RU{u,v}, V(e) C X and N(y,C) = X
forallyeY.

Proof. Tt is easy to check that (a) holds since [C] does not have a u™-v™* e-
hamiltonian path. In particular, uv ¢ E. Clearly, |P| < |R|4+3 and |P|+|R| <
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> pep|Pl +|R| = r—2. By (a) and Lemma 3.1, d(uv, P) < |P|+ 1 for
each P € P and so d(uv,C) < r+ 1. Since d(uv,C) > r + 1, it follows that
d(uv,C) =r+1,|P|=|R|+3, V(e)N(RU{u,v}) =0, and d(uv, P) = |P| +1
for all P € P. So (b) holds.

As|P| = |R|+3, R does not contain two consecutive vertices of C. To proves
(c), Let C' = x1 -+ x,z1 be such that 1 = u, zo = u*, 2, = v and x4 = vT.
Without loss of generality, say e = zq4xq41 for some g € {p+1,...,7 —1}. We
first check that R is an independent set. Let Ly = C(z1,p), Lo = C(xp, 24]
and Ly = Clzgy1,2,]. Let R, = RNV(L;) for i € {1,2,3}. Say x;x; € E for
some {x;,z;} C R with i < j. We shall obtain a contradiction by showing that
[C] has an za-xp41 e-hamiltonian path. According to the locations of z; and
z; in R = Ry U Ry U R3, there are six cases to check, which are very similar
in the verification. So we just show one example with z; € R, and z; € Rs.
In this case, {x12i+1,2pxi—1} C E and {z12,-1,2pz;41} C E by (a), (b) and
Lemma 3.1. Then

1'20[1'2, $i,1]$p07 [ZL'p, SCZ']SCZ'ZL'J'C[ZL'J', 1'1]1']',107 [SCj,1 5 ZL'erl]

is an zo-Tp41 e-hamiltonian path of [C], a contradiction.
Next, we show that d(z, P) <1 for all € R and P € P. On the contrary,
say d(z, P) > 2 for some x € R and P € P. We shall obtain a contradiction
by showing that [C] has an x9-z,41 e-hamiltonian path. According to the
locations of z in Ry U Ry U Rz and P on L1 U Ly U L3, there are nine cases
to check, which are also very similar in the verification. So we just show one
example with z € R; and P on Ls. Say P = C[z;,z;]. By (a), (b) and Lemma
3.1, N(z1,P) ={za,...,z;} and N(xp, P) = {z;,...,24} for some i < a < j.
Since d(x, P) > 2, xx; € E for some z; € V(P) with t # z;. If ¢ > a, then
22Cx2, 27 2,C™ [2p, x]xx Clay, T1]2i—1C ™ [T1—1, Tp+1]

is an xo-zp41 e-hamiltonian path of [C], a contradiction. Thus ¢ < a. Then
ZL'QC[:CQ,:C]:CZ'tC[Z't,z1]$+c[z+,zp]$t7107 [t—1, Tps1]

is an zo-Tp41 e-hamiltonian path of [C], a contradiction.

To prove (d), we have d(z,C) < |P| for all z € R by (c). Since |P| <
r — |R| — 2 and |P| = |R| + 3, we obtain d(z,C) < (r+1)/2 for all zx € R. Tt
follows that if R # (), then r is odd and |P| = 1 for all P € P. Consequently,
itY = RU{u,v} and X = V(C) —Y, then N(y,C) = X for all y € Y and
so0 (d) holds. So assume that R = (). By (a), (b) and Lemma 3.1, there exists
xq;, € V(L;) for i € {1,2,3} such that

N(xlv C) = V(Ll[x% xal]) U V(LQ[zazvxq]) U V(L3[xa3az7“])a
N(zp, C) = V(Li[2ay, 2p-1]) UV (L2[Tps1, Ta,]) U V(Ls[Tg41, Tas))-
We claim that for each vertex x of Li[z2,%q,) U La(Za,, q) U L3(Zas, Tr),

N(z,C) C N(x1,C) U {x1}. If this is false, say zy € E(G) for some vertex x
of Li[xa, e, ) U La(xq,, 2q) U L3(xe,, 2] and y € V(C) — N(x1,C) — {x1}. We
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shall obtain a contradiction by showing that [C] has an xs-zp41 e-hamiltonian
path. According to the locations of z in Lq[z2, %4, ) U Lo(Zq,, 2q) U L3(Tay, Tr)
and y on L1 U Ly U Lg, there are nine cases to check, which are very similar in
the verification. So we just show one example with = in L3(z,,x,] and y on
Li(zq,,xp—1]. In this case,

2202,y N, O [y, ylaCle, 1 Je™ O o™ ]

is an xo-rp41 e-hamiltonian path of [C], a contradiction.

Similarly, N(y,C) C N(zp,C) U {x,} for each vertex y of L1 (x4, zp—1] U
Lo[zpt1,®ay) U L3(Tg41, Taz)- As d(z,C) > (r+1)/2 for all x € V(C) — V(e),
we see that r is odd and d(z1,C) = d(z,,C) = (r 4+ 1)/2. Furthermore,
if {xa,,Tas} = {xq, Tg41}, then {zq,, ¢, Tg41} is a vertex-cut of [C] and each
component of [C]—{%q4,, g, Z¢11} is isomorphic to K(,_3)/2. Consequently, (d)
holds. So assume that {zq,, Zas } # {24, Tq+1}. We shall obtain a contradiction
by showing that [C] has an x2-zp41 e-hamiltonian path. If z441 # x4, then

22C[22, Ta, 2107 [21, Tg42]%ay 11C[Tar +1, TplTa41C 7 [Tg41, Tp1]

is an z2-zp41 e-hamiltonian path of [C], a contradiction. Therefore 411 = 2,
and z4 # 4,. Then

22Clwe, wpltq 11242107 21, 2041|2107 [24-1, Tp]

is an x2-wpy1 e-hamiltonian path of [C], a contradiction. This proves the
lemma. [l

Lemma 3.7. Let C be a cycle of order r in G. Let A be a positive integer.
Let e € E(C). Suppose that d*(P,C) > r + X for every e-hamiltonian path P
of [C]. Then d(zy,C) > r+ X for every pair x and y of distinct vertices of C
with V(e) # {z,y}.

Proof. On the contrary, say that there are two distinct vertices z and y on
C with V(e) # {z,y} such that d(zy,C) < r + XA — 1. Clearly, either e ¢
{zx=,yy~} or e & {wax™,yyT}. Say without loss of generality the former
holds. Then d(zz~,C) > r + X and d(yy~,C) > r+ A. Thus d(z~y~,C) >
2r+A) = (r+A—1) > r+2. By Lemma 3.6, [C] has an 2-y e-hamiltonian
path and therefore d(zy, C') > r + A, a contradiction. O

Lemma 3.8. Let C = x1---x,x1 be a cycle in G. Let e = x1x2. Suppose that
d*(P,C) > r+1 for each e-hamiltonian path P of [C] with o(P,e) > 0. If there
exists x; € V(C) — V(e) such that d(xj,C) < r/2, then one of the following
two statement holds:
(a) If4 < j <r—1, then d(x;,C) > (r+2)/2 for all 3 < i <r with i # j;
(b) If j € {3,r}, then d(z;,C) > (r +2)/2 for all 4 <i <r—1.

Proof. To prove (a), say 4 < j <r —1. Then d(z;—1,C) > r+1—d(z;,C) >
(r+2)/2. Similarly, d(zj+1,C) > (r +2)/2. If d(z;,C) < (r 4+ 1)/2 for some
3 <1 <r with i # j, let 2; be the one closest to z; on C' —e. Say without loss
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of generality ¢ > j. Then d(z;—1,C) > (r+2)/2. Thus d(zj_1xi—1,C) > r+2.
By Lemma 3.6, [C] has an z;-z; e-hamiltonian path and so d(z;z;,C) > r+1.
Thus d(z;,C) > r+1—1r/2 = (r+2)/2, a contradiction.

To prove (b), say without loss of generality that d(z3, C) < r/2, i.e., d(z3, C)
< |r/2]. If r < 4, nothing to prove. So assume r > 5. Then d(z4,C) > r+1—
/2] = [(r+2)/2]. Similarly, if d(x,,C) < r/2, then d(z,_1,C) > [(r+2)/2]
and so d(x42,—1,C) > r+2. M d(x,,C) £ /2, 1ie., d(x,,C) > [(r+1)/2], then
d(z4z,, C) > [(r4+2)/2]1+[(r+1)/2] = r+2. Let s € {r—1,r} be maximal such
that d(z4zs,C) > r+2. If d(z;,C) < (r +1)/2 for some i € {5,...,7 — 1}, let
x; be the one closest to x5 on C—e. Then d(x42;4+1,C) > r+2. By Lemma 3.6,
[C] has an x3-z; e-hamiltonian path and so d(z;,C) > r+1—1/2= (r+2)/2,
a contradiction. g

Lemma 3.9 ([6]). Let P = zx—1---x1 be an optimal path at x; in G. Let
r = a(P,z1) and ¢ > r/2. Suppose that for each v € V(QG), if there exists a
longest path starting at x; in G such that the path ends at v, then d(v) > c.
Then N(z;) C {z1, 22, ..., 2}, [P] has an x¢-; hamiltonian path and d(x;) > ¢
for alli e {1,2,...,r —1}. Moreover, if t > r, then x, is a cut-vertex of G.

Lemma 3.10. Let P = xx4—1 - --x1 be an optimal path at x; in G. Let r =
a(P,x1). Suppose that v > 3 and for each v € V(Q), if there exists a longest
path starting at x; in G such that the path ends at v, then d(v) > (r + 2)/2.
Then for each pair x; and x; of distinct vertices in {x1,x2,...,T,—1}, the
following three statements hold:
(a) Ifd(zr,{z1,22,...,27-1}) > 3, then [P] —x; has an x¢-x; hamiltonian
path;
(b) If N(xp, {z1,22,...,2r—1}) = {21, 2r—1} buti & {1,r—1}, then [P]—x;
has an x¢-z; hamiltonian path;
(¢) If N(zr,{z1,22,...,2p—1}) = {x1,27-1} and i € {1,r — 1} but j &
{1,7 — 1}, then [P] — x; has an x;-x; hamiltonian path.

Proof. Obviously, the lemma is true if » < 4. So assume r > 5. Let H =
{z1,...,2+} — {:}]. By Lemma 3.9, for each x; € {x1,...,2,_1}, [P] has an
x¢-x; hamiltonian path, N(x;,G) C V(H)U{z;} and d(x;, H +2;) > (r+2)/2.
Moreover, x, is a cut-vertex of [P] if t > r, and consequently, H 4+ x; has an x,-
x; hamiltonian path and so H has a hamiltonian path starting at .. Obviously,
for eachv € V(H —a,), d(v,H) > (r+2)/2—1=((r—1)+1)/2. Let L be
an optimal path at z, in H. Say L is an x,-y path. Then «(L,y) <r —1. As
S(H—x,) > (r+2)/2—2=(r—2)/2, H— z, is hamiltonian. If d(z,, H) > 2,
then H is 2-connected and by applying Lemma 3.9 to L in H, we see that
a(L,y) =r—1. Consequently, H has an z,-z,; hamiltonian path and so [P — ;]
has an x¢-z; hamiltonian path. Therefore (a) and (b) hold. If d(z,,H) =1,
then z; € {x1,2,-1} and so a(L,y) = r — 2. Moreover, the vertex z with
{zi, 2z} = {x1, 2,1} is a cut-vertex of H. To see (c), we have x; & {x1, 2,1}
and H has an x,-x; hamiltonian path. ([
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4. Proof of Lemmas 2.1-2.7

Proof of Lemma 2.1. On the contrary, say d(z1,G1) > (n1+2)/2 and d(y1, G2)
> (ng +2)/2, ie., 51(G1) > (n1 +2)/2 and §2(G2) > (n2 + 2)/2. Say without
loss of generality G; ¢ H;. By Lemma 3.3, we see that P;(G1) = 0. Let P =
Up, Up,y —1 + - - U1 be an optimal path at e; = w,, up, —1 in G1. Then N (uy,,,G1) C
{tny—1,Un,—2}. Say a(P,u1) =r. As §1(G1) > (n1 +2)/2 and by Lemma 3.9,
uy -+ -upup is an end-cycle at u, in Gy and for each j € {1,...,r — 1}, G4
has a up,-u; er;-hamiltonian path and d(uj,G1) > (n1 + 2)/2. Since ny >
d(tn,,G2) > (n+4)/2 — d(un,,G1) > n/2, we obtain ny > ny. Note that
r—12>(ny +2)/2 and so ny > 6.

By Property B, P5(G2) # 0. As §2(G2) > (n2 +2)/2 and by Lemma 3.3,
G2 € Hz. Thus d(y, G2) > (ne+2)/2forally € V(Ga)—V (e2). Let vy - - vp,v1
be a hamiltonian cycle of Gy with ez = vvg. Let 4,5 € {1,...,7r — 1} with i &
{1,7—1}. By Lemma 3.10, G1 —u; has an u,,-u; e;-hamiltonian path. Clearly,
d(un,u;,G2) > n+4— (n1 —1) = no + 5. Thus for some s € {4,...,no — 1},
d(vs, Un,uj) = 2 and so G1 — u; +vs € Hi. Thus Go —vs + u; & Ha. As
d(vs—1vVs41,Ga —vs) > ng +2 — 2 = ny and by Lemma 3.3, Go — vy € Hy. Let
C = wy -+ -wpwy be an es-hamiltonian cycle of Gy — vy with ¢ = ny — 1. As
d(u;, G1) <np—2,d(u;, C) > (n+4)/2—(n1—2)—1> 3. As C+u; & Ha, we
see that there are two distinct vertices u and v in C such that {u,v} NV (e2) =
0 and either {u™,vt} C N(u;) or {u=,v"} C N(u;). Say without loss of
generality {u™,v"} C N(u;). As Go —vs+u; € Ha, [C] does not have a ut-v™
eg-hamiltonian path. Clearly, d(z,C) > (n2 +2)/2 -1 = (t + 1)/2 for all
x € V(C) — V(ez). Thus we may apply Lemma 3.6(d) to [C]. First, assume
that [C] has a vertex-cut X with |X| = 3 and V(e3) C X such that each of the
two components [C] — X is isomorphic to K;_3)/2. As G2 —vs+u; & Ha, we see
that N(u;,C) = X. Thusvsz € Eforallz € V(C)— X as §2(G2) > (n2+2)/2.
Let v' € I(up,u;,C — X). Then G1 —u; + v € Hy and Ga —v' + u; € Ha by
Lemma 3.10, a contradiction. Therefore V' (C) has a partition X UY such that
| X|=({t+1)/2,V(e2) C X, Y| = (t—1)/2, {u,v} CY and N(y,C) = X for all
y €Y. As62(Ga) > (ne+2)/2, weobtain Y C N(vs). As Ga—vs+u; € Ha, we
see that N(u;,C) C X. As d(un,,G1) < 2, we readily see that d(u,,,Y) > 0.
Let v € N(up,,Y). Clearly, d(v',G1) > (n+4)/2 — (n2 +2)/2 = (n1 +2)/2.
Thus v'u, € E for some p € {1,...,r—1} with p # i. By Lemma 3.10, G1 —u;
has a up,-u, e;-hamiltonian path. With ¢" and w, in place of v, and u; in
the above argument, we see that V(G2 — v’) has a partition X’ UY” such that
| X' = (t+1)/2, V(e2) C X', |Y'| = (t—1)/2, N(y,Ga—v') = X' forally € Y’,
Y' C N(v') and N(u;, G2 —v') C X’. Since Y’ # Y and Y is an independent
set, we see that Y C X' U {v'}. Thus N(u;,Y) # 0, a contradiction. O

Proof of Lemma 2.2. On the contrary, say d(z1,G1) < (n1+1)/2 and d(y1, Ga2)
< (ng +1)/2. Then d(z1,G2) > (n2 + 3)/2 and d(y1,G1) > (n1 + 3)/2. By

Lemma 3.2(a), G1 — 21 +y1 € P1 and Gy — y1 + 21 € Pa. By Property A,
&(z1,y1) < 0. This implies that d(z1,G1) = (n1 +1)/2, d(x1, G2) = (na+3)/2,
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d(y1,G2) = (n2 +1)/2, d(y1,G1) = (n1 + 3)/2 and z1y1 € E. Since either
G1 & Hi or G2 & Ha, say without loss of generality G € Hi. As 61(G1) =
(n1 4+ 1)/2 and by Lemma 3.3, P;(G1) = 0. Therefore e; = zy,n,—1 and
N(zpn,,G1) C {@n,—1,%n,—2}. Thus ng > d(zp,,G2) > (n+4)/2 — 2. This
implies no > ny.

By Property B, P3(G2) # 0. As §2(G2) = (n2 + 1)/2 and by Lemma
3.3, G2 € Ha. Then d(y,G2) > (ne +1)/2 for all y € V(G2) — V(ez). Let
Hy = Gy — 1 and Hy = G3 + x1. By Property A and Lemma 3.2(a) as above,
we readily see that Hy —y € Pa, if d(y, G2) = (n2 + 1)/2, then yz, € E, and
so d(y, Hz) > (n2+3)/2 for all y € V(Hz) — V(ez2). Let C = vyvg - - vv1 be a
hamiltonian cycle of Hy with ¢t = no+1 and e = v1v2. Let Y be the set of those
vertices y € V(Hz)—V (e2) such that Ho—y € Ho. Then Hi+y & Hq forally €
Y. For each v, € V(C)—{v1,v2,v3,0t}, d(Vs—10541,C—0s) > na+3—2 = na+1
and so Hy — vs € Hz by Lemma 3.3. Thus V(C) — {v1,v2,v3,v:} C Y. Since
Pi(Gy) = 0 and N(zp,,G1) C {Zn,—1,Tn, -2}, we see that d(zozy,, H1) <
ny — 2. It follows that d(xoxy,,, H2) > n+4 — (n; —2) =t + 5. Consequently,
vs € I(x2xy,, H2) for some vy € V(C) — {v1,v2,v3,v:} and so Hy +vs € Hy, a
contradiction. O

Proof of Lemma 2.3. On the contrary, say that Go € Ha. Then y € S3(Gs)
and so d(y,G2) > (ng +2)/2 for all y € V(G2) — V(ez) and G; & Hi. As
d(:z:l, GQ) > (ng + 3)/2, Go+x1 € Ho by Lemma 32(f) and so SQ(GQ + .Tl) =
V(G2 + 1) — V(e2). By Property A and Lemma 3.2(a), we readily see that
d(y,Ga + x1) > (ng + 3)/2 for all y € V(G2) — V(e1). Set H1 = G — 21
and Hy = Go + x1. Let A = {’U S V(HQ) — V(eg) | Hy, —v € 7‘[2} Then
Hy +v ¢ H,y for each v € A. Let C = v1va -+ - vp,v1 be a hamiltonian cycle of
G4 with e; = viva. Say Xo = {vn,,v1,v2,v3}. We claim:

Claim 1. The following two statements hold:
(a) V(Hz) — Xo C 4
(b) If d(’Ul,HQ — Xo) Z 1, then Uny S A and if d(’UQ,HQ - Xo) Z 1, then
vy € A.

Proof. Clearly, 1 € A. Let v; € V(G2) — Xo. Then d(vi—1vi41, G2 — v;)
(ng+2)—2 = (n2—1)+1 and by Lemma 3.3, Ga—v; € Ha. Since d(x1, G2—v;)
(ng+3)/2—1=((n2—1)+2)/2, Hy — v; € Ho. Hence (a) holds.

To see (b), we just need show the first assertion by the symmetry. If z1v; €
E, then xqv1 « - Upy—1 € Pa(Ha — vp,) and d(x10n,—1, Ho —vp,) > no+3—-2=
ny+ 1. By Lemma 3.3, Hy — vy, € Ha. If v1v; € E for some v; € V(G2) — Xo,
then Vi—1V5—2 * - V2UV1V; V41 * " Upy—1 S PQ(GQ - Ung) and d('Ui—l'Ung—h G2 —
Un,) > Na. As above, we see Hy — v,,, € Ha. Hence (b) holds. O

>
>

We now divide the proof of the lemma into the following two cases. Say
= ny — 1.
Case 1. Hy & H;.
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Let P = z1 - - - z; be an arbitrary path in Py (Hy). Then I(z12;, A) = 0. Thus
d(z121, H2) < na+5 and so d(z12;, Hy) > 1. By Lemma 3.3, d(z12;, H1) =1 and
o(Pye1) > 0. Thus d(z121, H2) = n2 + 5, Xo = I(z121, Ha), A = V(Hz) — Xp
and d(z,z12;) = 1 for all x € A. By Claim 1, N(v1ve, H2) € Xo. Then
ny — 1=1 Z d(’Ul,Hl) Z (nl + no + 4)/2 - d(’Ul,G2> Z (n1 “+ no + 4)/2 -3
and d(z1,G32) < (ng — 2). As d(xz1,G2) > (n2 + 3)/2, we see that no > 7. As
ny—3 > d(vs, G2) > (n2+2)/2, it follows that ny > ng > 8 and d(xy1, Hy) > 4.

We apply Lemma 3.5 to Hy. First, assume that V(H;) has a partition
X UY such that |X| =1/2, V(e;) € X and N(y,H;) = X for all y € Y.
Then every two distinct vertices in Y can play the role of z; and z;. Hence
d(z1,Y) >1/2—12> 2 and so G; € H;1, a contradiction. Therefore H; — V' (e1)
has two components J; and Jy such that H; — V(ey) = J1 U Ja, each of J; and
Ja is complete and d(z, H;) = 1 — 1 for each = € V(ey). Say without loss of
generality z1 € V(J1) and d(z1, H1) < d(z;, H1). Then d(z1,G1) < (n1 +1)/2
and so d(z1,G2) > (na + 3)/2. Clearly, G1 — z1 € P; and G — 21 has an z1-2
hamiltonian e;-path. Switching the roles of z; and z; in the above argument, we
also obtain Xo = I(xju, G2+ z1). By Claim 1, {vs, v,,} C A, a contradiction.

Case 2. H1 € H;.

Let L = wjus---uwu; be a hamiltonian cycle of Hy with e; = wjuq, B =
V(L—uy)and a =na+1—|A|. If a > 3, then N(vy, Ha) C Xy or N(vg, Hy) C
Xo by Claim 1. As §2(G2) > (n2 4+ 2)/2, it follows that ng > 6 if a > 3. We
divide this case into the following three subcases.

Subcase 2.1. d*(P, Hy) > 1 + 2 for all P € Py(H;).

By Lemma 3.7, d(xy, Hy) > 1+ 2 for all z,y € V(H;) with  # y and
xy # e1. By Lemma 3.6, for all 2,y € V(H;) with « # y and xy # e, Hy has
an z-y ej-hamiltonian path. Since Hy +v; & H for all v; € A, we see that the
following Claim 2 holds:

Claim 2. For each v; € A, if d(v;, Hy) > 2, then N(v;, H1) =V (eq).

By Claim 2, ny > (n1 +ne +4)/2 — d(v;, H1) > (n1 + ne +4)/2 — 2 for
all v; € A. Thus ny > n;. By Claim 2, d(v;, B) < 1 for all v; € A and so
d(A,B) < |A] = nz +1 —a. On the other hand, d(A,B) > > pd(u,A) >
> uep((nit+n2+4)/2—d(u, Hi)—a) 2 (n1—2)((n1+n2+4)/2— (m1 —2) —a).
Therefore (n; —2)((n1 +n2+4)/2—(n1 —2) —a) — (n2 + 1 —a) < 0. Denote
the left side of this inequality by f(n1)/2 with no = n —ny. Then f(ni) =
—2n2+ (n+14—2a)ng + (—4n—18+6a) < 0 for 4 < ny < n/2. As f"(n1) <0,
f(n1) > min{f(4), f(n/2)} = min{6 — 2a,3n — an — 18 + 6a}. Thus a > 3 for
otherwise f(ni) > 0. Thus N(vi, Hy) C Xo or N(ve, H2) C Xp. Say without
loss of generality N (vi, Ha) C Xo. Then ny—1 > d(v1, Hy) > (n1+n2+4)/2—3
which implies that n; > ns. Let v; € A — Xo. Then no — 1 > d(v;, Ha) >
(n1 4+ n2 +4)/2 — 2 which implies that no > n; + 2, a contradiction.

Subcase 2.2. d*(P,Hy) > 1+ 1 for all P € Py(Hy).
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By the above subcase, d*(P,H;) = | + 1 for some P € P;(H;). Thus
d*(P,Hz) >ni+ne+4—1—1=nz2+4. As d*(P,v;) <1 for all v; € A. Thus
d*(P,v") = 2 and so v’ ¢ A for some v' € {vs3, vy, }. It follows that a > 3 and so
ng > 6. By Claim 1, N(vy, Hy) € Xy and we may assume that v,, € A. As in
the above paragraph, this implies that ny > ns. Let z be an arbitrary vertex in
A—Xy. Thenny—1>d(z,H1) > (n1+n2+4)/2—(n2—1) > 3. Tt is easy to see
that there exist two distinct vertices u and w on L such that either {u~,w™} C
N(z) and e; € {uu™,ww™} or {u™,wt} C N(2) and e; & {vu™, ww™}. Say
without loss of generality {u™,wt} C N(z) and e; € {vut,wwt}. By Lemma
3.7, d(zy, Hy) > I+ 1 for all {z,y} C V(H;) with x # y and xy # e;. We claim
that d(z, Hy) > (14+1)/2 for all x € V(H). If this is false, say d(zo, H1) <1/2
for some xg € V(Hy). Then d(z, H;) > (I +2)/2 for all z € V(H;, — z¢) with
xox # ey and d(xg, Hz) > (n1 + na +4)/2—-1/2 > (na +5)/2 > 5. Thus
d(zg, A — Xp) > 0. It is easy to see that in the choices of the vertices u, w
and z in the above, we can choose u, w and z such that zo € {u,w}. Thus
d(uw, Hy) > 142 and by Lemma 3.6, H; has a u™-w™ e;-hamiltonian path and
so Hy + z € H1, a contradiction. Hence d(z, H1) > (14 1)/2 for all x € V(H;).

We now apply Lemma 3.6(d) to H; since H; does not have a ut-wt eg-
hamiltonian path. First, assume that H; has a vertex-cut X with |X| = 3 and
V(e1) C X such that Hy — X = Hj U HY, where H] and H{ are isomorphic to
K_3)/2- Then N(z,Hy) = X as Hy + z ¢ Hi. As z is arbitrary in A — X,
N(A*Xo,Hl) = X. It follows that d(l‘,G) < (l+ 1)/2+4 < (nl —+ no +4)/2
for x € V(H; — X), a contradiction. Therefore V' (H;) has a partition X UY
such that | X| = (I1+1)/2, V(e1) C X, {u,w} C Y, and N(y,H;) = X for
all y € Y. Clearly, {ut,wt} C X. Thus N(z,H,) C X as H| + 2z & Hi.
Let y € Y. As d(y,A—Xo) > (m1 +n2+4)/2—-(1+1)/2—-4 > 0, let
z' € N(y, A — Xp). With 2’ in place of z in this argument, we see that V (H;)
has a partition X’ UY” such that | X’| = (I+1)/2,V(e;) C X', N(y', H;) = X’
forally’ € Y and N(2/, H;) C X'. Tt follows that Y N X # () and so Y’ C X.
Thus | X| > (I1+1)/24 1= (I + 3)/2, a contradiction.

Subcase 2.3. For some P € Py(H;), d*(P,Hy,) <.

For each P € P1(H), as d*(P,A) < |A|, d*(P,H1) > n1+n2+4—(ne+1+
a) =1+4—a >1. Thus a = 4 and by Claim 1, N (v, Ha) C X for v € {v1,v2}.
As before, it follows that n; > no > 6. Let z be an arbitrary vertex in A. Then
d(Z,Hl) Z (nl —+ no +4)/2 — (TLQ — 2) Z 4.

First, assume that there exists P € Py(H;) such that d*(P,Hy,) = 1. As
Hy +v & Hy for all v € A, it follows that d*(P,v) = 1 for all v € A and
d*(P,Xo) = 8. Say P = z129- -z with d(z1, P) < d(z;, P). Then d(z1,P) <
1/2,d(z1,H2) > [(n1 +mna+4)/2] — [1/2] > 5. Let 2. € {21,2} and v, € A be
such that vpz. € E. We claim that Go+2.—v; € Hs for all v; € V(Ga)—V(ea).
To see this, say Ga + z. — v; & Ho for some v; € V(G2) — V(ez). Clearly,
vj—1Vj+1 € E otherwise G + z; — v; € Ha. First assume that v; & {vs, v, }.
Then d(vj—1vj+1, Ga—vj) > na+2—2 = (ng—1)+1. This implies that C—wv; has
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an accessible edge e’ with ¢’ # es. Since N(v1v2,G2) C X and d(z., Xo) = 4,
it follows that Go — v; + 2z, € Ha, a contradiction. Hence v; € {v3, vy, }. Say
without loss of generality v; = vs. Then P’ = vy Up2c0201VnyUny—1 * * - Vb1
is an eg-hamiltonian path of Gy — vs + z. with d(v4vp11, G2 —v3+ 2c) > no. As
d(vg, e2) = 0, this implies that P’ has an accessible edge e” with e” # es and so
G2 — vj + z. € Ha, a contradiction. Hence this claim holds. Let H{ = G1 — 2,
and H) = G2 + z.. We claim that H{ € P;. To see this, say H; € P;. Then
for any Q € P1(Hy) and v € V(HS) —V(e2), Hi +v & H1 and so d*(Q,v) < 1.
Thus for any Q € P1(H}), d*(Q, H)) < na + 3 and so d*(Q, Hy) > 1+ 2. Let
v; € A—{x1}. Then d(vj,H{) > (n1 +n2 +4)/2 — d(v;, G2) — d(vj, zc) >
(n1+mn2+4)/2—(n2—3)—1> 4. By Lemma 3.6 and Lemma 3.7, we see that
Hi +v; € Hi, a contradiction.

Therefore H| & P1. As d(z1,H1) < [1/2], d(z1,G2) > [(n1 +na +4)/2] —
[l/2] —1 > 5. The above argument implies that H; — z1 + 21 € Py and so
x121 € E. Thus z121 € E and so Hy — z; + x1 € P;. Consequently, the above
argument implies that d(z;, G2) = d(z;, Xo) = 4. Thus d(z12;, H1 — 21) >
ni+ns+4—(na—2)—4—2=(-1)+2. By Lemma 3.2, Hy — 21 +x1 € Py,
a contradiction.

Therefore for each P € P{(Hy), d*(P,H;) > |+ 1. Recall that L =
uiUsg -+ - wpuy i a hamiltonian cycle of Hy; with e; = wjus. To apply Lemma
3.8, let us first assume that d(us, Hy) < /2 for some uy € V(L) — V(ey). If
4 <t <1-1, then d(u;, H1) > (1+2)/2 for all 3 < j <[l with j #¢t. As
d(z,Hq) > 4, it is easy to see that there exist two distinct vertices u and w on
L with u; & {u,w} such that either {u~,w™} C N(z) and e; € {u"u,w w} or
{ut,wr} C N(z) and e; & {utu,wTw}. By Lemma 3.6, we see that Hy + 2 €
1, a contradiction. Hence u; € {us,w;}. By Lemma 3.8, d(u;, Hi) > (1+2)/2
for all 5 < j < 1 — 1. To avoid the existence of u and w as above such
that Hy + z € H1, we see that N(z, H1) = {u1,us,us,uj—1}. As z is an ar-
bitrary vertex in A, we see that d(u:, A) = 0 and so d(ut, H2) < 5. Thus
d(ug, H1) > (n1 +n2+4)/2—-5> (14+1)/2, a contradiction.

Therefore d(u;, H1) > (1+1)/2 for all u; € V(Hy)—V(e1). As d(z, Hy) > 4,
there exist two distinct vertices v and w on C such that either {u~,w™} C N(z)
and e; & {uu”,ww™ }or {ut,wt} C N(z) and e; & {uu™, ww™}. Say without
loss of generality {u™,w™} C N(z) and e; € {uu™t,ww™*}. We now apply word
by word the argument in the last paragraph of Subcase 2.2 to H; and Hy and
a contradiction follows. O

Proof of Lemma 2.4. As P3(G2) = 0, N(vn,,G2) C {vny—1,Vn,—2} and so
ny > d(Vn,, G1) > (n1 + n2 +4)/2 — d(vn,, G2). Thus ny > ny and if ny = na,
then N(vn,,G2) = {Un,—2,VUn,—1} and so r < ng — 2. Since ng —2>r —12>
(ne +2)/2, we see that no > 6 and if r < ng — 2, then ny > 8.

On the contrary, say that the lemma fails. Let ug € V(G1) — V(ey1) with
d(up, G1) minimal be such that G1 —ug € Py, G2 +ug € Hz and d(ug, J*) > 0.
Let v, € J* with wov. € E. As Gy + ug € Ho, we see that ugv,, € F if
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VUnyUna—2 € E and d(ug, Upyvn,—1) > 1 if v,,0n,—2 € E. Thus we may assume
without loss of generality that ugv,, € E. Let B be the set of all the vertices
v; in G such that Go — v; + ug € Ha. By Lemma 3.10, V(J) — {v.,v,} C B,
and if d(ug, J —v,) > 2, then v. € B. Set H =G —up and | = |H| =n; — 1.
We claim the following:

Claim A. If d(up,G1) < (n1 + 1)/2, then r € {ny —2,n, — 1} and B =
{v1,...,v,—1}. Moreover, for each P € Pi(H) we have that d*(P,v;) < 1
forall 1 < i <r—1,d*(P,H) > 1 and if d*(P,H) = I, then r = ny — 2,
d* (P, Vpy—2Un,—1Un,) = 6, d*(P,ug) = 2 and d*(P,v;) =1 forall 1 <i <r—1.

Proof. Say d(ug,G1) < (n1+1)/2. Then d(ug,G2) > (n2+3)/2. As Ga+ug €
Ho, for each y € V(G2) — V(ez), G2 —y +up € P2 and so if Gy — ug +
y € Py, then &(ug,y) < 0 by Property A. Let y be an arbitrary vertex of
Go — Vez). If d(y,G2) < (n2 4+ 1)/2, then d(y,G1) > (n1 + 3)/2 and so
G1 —up + y € P; by Lemma 3.2(a). Consequently, &(ug,y) < 0. This implies
that d(y, G2) = (n2+1)/2 and uoy € E. Therefore d(y, G2) > (na+1)/2 for all
y € V(G2)—V (e2). Consequently, r € {na—2,n2—1}. As d(ug, G2) > (n2+3)/2
and r—1 > [(na+2)/2], we see that d(ug, J—v,) > [(n2+3)/2]—(na—r)—1 > 3.
By Lemma 3.10, B = {v1,...,v,—1}. Let P be an arbitrary path in P;(H).
Say v and w are the two endvertices of P. Then I(uw,G2) N B = 0, i.e.,
d*(P,v;) < 1lforallie {1,...,r—1}. It follows that d(uw, G2) < ny+ 3 and if
equality holds, then r = ny — 2 and {vp,—2, Vny—1,0n,} = I(uw,G2). Clearly,
dluw,G1) > n1+na+4—(n2+3) =1+ 2 and so dluw, H) > [. Claim A
follows.

We now break into two cases here.
Case 1. H & H1.

Then d*(P,H) < I by Lemma 3.3 and so d*(P,G2) > ni +n2 +4 —1—
d*(P,ug) > ng+3 for all P € Py (H). First, assume that d(ug, H) < (n1+1)/2.
By Claim A and Lemma 3.3, r = ngy — 2 and for each P € Py(H), d*(P,H) =
l, o(e1,P) # 0, d*(P,{uo,Vny—2,Vny—1,Un,}) = 8, and d*(P,v;) = 1 for all
1<i<r—1. We apply Lemma 3.5(c) to H. First, assume that V(H) has a
partition XUY such that | X| =1/2,V(e1) C X and N(y,H) = X forally € Y.
Then any two distinct vertices in Y can play the role of the two endvertices
of P. Hence d(v1,Y) > 1/2—1 > 2 and so H + v; € H1, a contradiction.
Therefore H — V(e1) has exactly two components H; and Hs such that both
H, and Hy are complete and d(z, H; U Hy) = [ — 2 for each x € V(ey). It
follows that V(Hy U Ha) C N(ug). Thus ny — 3 < d(ug,G1) < (n1 +1)/2.
This implies that n; < 7. As mentioned in the beginning paragraph, we have
r =ng — 2 and ny; > ny > 8, a contradiction.

Therefore d(ug, H) > (n1 + 2)/2. Let P = z1--- 2 be arbitrary in P;(H)
with 21 € S1(H). We claim d(z1,G1) > (n1 + 2)/2. If this is not true, say
d(z1,G1) < (n1 +1)/2. Then d(z1,G2) > (n2 + 3)/2. Clearly, d(z1,J) >
[(ne +3)/2—(n2—7)] > 4asr—12> (ny+2)/2 and so d(z1,J*) > 0.
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By Lemma 32(&), Gy —2z1 = H — 2z +uy € Pq. As d(Zl,Gl) < d(uO,G1>
and by the minimality of d(ug,G1), G2 + 21 € Ha, ie., z10,, € E and if
UnyUny—2 € E, then zqv,,—1 € E. By Lemma 3.2(b), G2 + 21 € Pa. If
v € S9(G2 + z1), then d(v,Ga + z1) > (n2 + 3)/2 for otherwise £(z1,v) > 0,

d(v,G1) > (n1 +2)/2 and Gy — 21 +v € P; by Lemma 3.2(a), contradicting
(1). Let s be the maximal index such that zyvs € E. Set ' = max{r,s}. By
Lemma 3.9, for all v € {z1,v1,...v_1}, d(v,Ga +21) > (n2+3)/2, N(v, Gy +
z1) € {z1,v1,...,0} and G + 21 has a v,,-v ex-hamiltonian path. Therefore
d(v,G2) > (na +1)/2 for all v € {v1,...,v,,_1}. It follows that ' = r or
v =r+1. Asd(z12;,G2) > nao+3,i(z121, J+ve) > 3. As I(212;, B) = 0, we see
that I(z121, G2) = {ve, U, vrq1}. It follows that d(z12;, H) =1, N(z12,G2) =
V(G2), d(ug,z121) = 2, B =V(J) — {ve, v} and d(v;,z12;) = 1 for all v; € B.
This argument implies that for any w-v path in P;(H), d(uv, H) = | because
min{d(u, H),d(v, H)} <1/2 and so min{d(u, G1),d(v,G1)} < (n1 +1)/2.

We now apply Lemma 3.5(c) to H. First, assume that V' (H) has a partition
X UY such that |X| = 1/2, V(e;) € X and N(y,H) = X for all y € Y.
Then any two distinct vertices in Y can play the role of the two endvertices
of P. Hence d(v;,Y) >1/2—1 > 2 and so H + v; € H; for each v; € B, a
contradiction. Therefore H — V(e1) has exactly two components H; and Ha.
Say z1 € V(H;y) and z; € V(Hz). Then z; can be any vertex in H; and z; can
be any vertex in Hy for the above argument. Consequently, V(Hz) C N (vy,)
and V(H{UH3) C N(v.)NN(ug). Clearly, Gy —x+v. € H; for any x € V(Ha).
Let vg € B — {v.}. If vy € E for some x € V(Hy), then Go — v, + = € Ha,
a contradiction. Therefore d(vg, H2) = 0 and so N(vg, H1) = V(Hy). As
d(’l)d, Gl) > (n1 + no +4)/2— (ng — 2) >4, |H1| > 2. As V(Hl UHQ) - N(UO),
we see G1 — 21 + vg € Hi1. As G2 — vg has a v,,-v. es-hamiltonian path,
Gy —vg + z; € Ha, a contradiction.

Therefore d(z1,G1) > (n1+2)/2 and so d(z1, H) > (I+1)/2. Thus 6, (H) >
(I+1)/2. As H ¢ Hy and by Lemma 3.3, P;(H) = 0 and so e; = 2z;2;—1. As
d(ug, H) > (n1 4+ 2)/2 and by Lemma 3.2(a), H — 21 +ug € P1. As H & Hy,
d(z12;, H) <1 —1 by Lemma 3.3. Choose P to be an optimal path at e; in
H. Say t = a(P,z1). By Lemma 3.9, C = 2129+ 221 is an end-cycle at z
in H such that d(z;,C) > (I +1)/2 for all i € {1,2,...,t — 1}. Thus for all
i€{1,2,...,t—1}, each z; can play the role of z; in the above and so d(z;, G1) >
(n14+2)/2. Clearly, d(ug,C — z:) > 0. Say without loss of generality ugz; € E.
As Py(H) =0, N(z1,G1) C {z1-1,21-2,u0}. Clearly, d(z;,J —v;) > (n1 +n2+
4)/2 -3 — (ng —r+ 1) > 0. Recall that ugv,, € E. Therefore if we set G' =
G1 *V(el) +V(€2) and G = Gy — V(ez) +V(€1), then G’ € Ho and G’ € H;.
Recall that if z;2;_o € E, then N(z;_1,G1) C {21, z1-2,u0} as Py (H) = 0. We
readily see that d(e;, G1 —V(e1)) <1, d(e1,G2) > (n1+na+4)—1—2=ny+3,
d(eg,Gg — V(eg)) < ng—2and d(eg,Gl) >ni+no+4— (ng — 2) —2=n7+4.
Thus

(2) G(G/> + 6(G”> == S(Gl) - d(el, Gl - V(€1>> + d(el, GQ) + 6(G2>
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— d(eg, Gy — V(€1>> + d(eg, Gl) — 2d(€1, 62)
> e(Gl) + €(G2) + 10 — 2d(€1, 62).

As 10 — 2d(e1,e2) > 2 and by (1), we see that ny = |G’| # na. As nyg > no,
ny > na. As N(z;,G1) C {z1—2,21-1,u0}, we obtain that ny > d(z;,Ga) >
[(n1+na+4)/2—d(z,G1)] = na. Tt follows that N(z;,G1) = {z1—2, z1-1,u0 }
and d(z;, G2) = na. As H +v; & H, for all v; € B, it follows that z;v; & E for
allie{l,...,t —1} and v; € J — {ve,v,} C B. Thus d(z1,G1) + d(z1,G2) <
t+nys—r+2. Let v € J—{ve,ve}. Then d(v,Gy)+d(v,Go) <l—t+24+r—1.
Consequently, d(z1) + d(v) < ni +n2+2. But d(z1) +d(22) > ny +na +4 as
§(G) > (n1 +na +4)/2, a contradiction.

Case 2. H € H;.

Let C = 2125 - 2121 be an ej-hamiltonian cycle of H with e; = z125. Let
v; € B. With the details stated in the beginning paragraph, we see that
dvi, H) > [(n1 +n2+4)/2] — (r —1) —d(vs, up) > 4 and if equality holds, then
viug € E, r € {na — 2,ne — 1} and d(v;, G3) = r — 1. We divide this case into
the following two subcases.

Subcase 2.1. For each path P € Py (H), d*(P,H) > 1 + 1.

First, assume that d(w, C') < 1/2 for some w € V(C)—V(e1). fw & {z3, 21},
then d(z,C) > (I 4+ 2)/2 for all x € V(C — w) — V(e1) by Lemma 3.8. As
d(v;,C) > 4 and H + v; € H1, we readily see that there exist two distinct
vertices z; and zp in N(v;, C) such that either {z;, 2, } C V(C) — {21, 22, w}
or {z;r, z7} CV(C) — {21, 22,w}. Consequently, by Lemma 3.6, H has a z;-2y,
e1-hamiltonian path and so H + v; is hamiltonian, a contradiction. Therefore
d(zj,C) > (14+2)/2for all4 < j <[—1. Asabove, N(v;, C)) does not contain two
distinct vertices z; and 2 such that either {z;, 2z, } C V(C) — {21, 22, 23,21} or
{z;',z,f} CV(C) —{z1, 22, 23, z1}. Tt follows that N(v;,C) = {z1, 22, 24, 211}
The above argument allows us to conclude that r € {ny — 2,ns — 1}, and for
all v € B, N(v,H) = {21, 22,24, 21-1}. As V(J) — {ve, v} C B, d(w,G2) <4
and so d(w,C) > (n1 +n2+4)/2—5> (1 +1)/2, a contradiction.

Therefore d(z;, H) > (I1+1)/2 for all ¢ € {3,...,1}. As d(v;, H) > 4 and
H + v; € Hi, there exist two distinct vertices w and v in C' — V(ey) such
that either {u™, vt} C N(v;) or {u",v~} C N(v;). Say without loss of gen-
erality {ut,v"} C N(v;). Then H does not have a ut-v™ ej;-hamiltonian
path. We apply Lemma 3.6(d) to H. First, assume that H has a vertex-cut
X with V(e;) € X and |X| = 3 such that H — X has exactly two compo-
nents isomorphic to K;_3y/» and X C N(y) for all y € V(C) — X. Obviously,
H + v; € My, a contradiction. Thus V(H) has a partition X UY such that
X =(0+1)/2,]Y|=(1-1)/2, {ut,oT}UV(e1) C X and N(y,H) = X for
ally € Y. As H + v; & H,q, it follows that N(v;, H) C X. Let y € Y. Then
d(y,G2) > (n1 +ne+4)/2—-(1+1)/2 -1 = (n2 + 2)/2. Thus d(y,B) > 0.
Let v; € N(y, B). With v; in place of v; in the above argument, we see that
V(H) has a partition X’ and Y’ such that |[X'| = (I +1)/2, V(e1) C X',
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N(v;, H)C X' and X' = N(y/,H) for all ¥/ € Y’. AsY is an independent set,
it follows that Y C X’ and so |X'| > (I—1)/2+2 = (I + 3)/2, a contradiction.

Subcase 2.2. There exists P = z129---2; € P;(H) such that d(z12;, H) <.

Then d(z12;, G2) > ni+na+4—1—d(ug, z121) > n2+3 and so i(z12;, G2) > 3.
Say d(z1,G1) < d(z;,G1). Then d(z1,G1) < 1/2+1 = (ny +1)/2. Thus
d(Zl,GQ) Z (TLQ + 3)/2 Asr Z 52(G2) +1 Z (7’L2 + 2)/2 + 1, d(Zl,J - ’UT) Z
[(na43)/2—(n2—7)—1] > 3. Therefore G + z; has a hamiltonian path from
e1 to z;. We claim that G; — z; € P;. If this is not true, then d(ug, P — 21) <
(I—1)/2 by Lemma 3.2(a) and so d(ug,G1) < (I+1)/2. By Claim A, it follows
that

d(z1z1, H) =1, r =ng — 2,
(3)

I(z121,G2) = {vny—2,Vny—1,Un, } and d(ug, 2121) = 2.

Therefore G; — z; € Py. By the minimality of ug, d(ug,G1) < d(z1,G1) <
(n1 4+ 1)/2. Therefore (3) still holds and d(ug, G1) < (n1 + 1)/2 in any case.
Moreover, d(ug, J) > [(n2 +3)/2] — (ne —r) > 4 and so B =V (J) — {v,} as
mentioned in the paragraph above Claim A. As r — 1 > (ng + 2)/2, ny > 8.
We claim that for each {u,v} C V(J) — {v,} with u # v, G2 — {u,v} +
{ug, 21} € Ha. To see this, we note that wgvn,Vn,—1Vn,—221tg is a cycle in G.
Moreover, we have that for all € V(J — {u,v,v.}), d(z,J — {u,v,v,}) >
(n2+2)/2—3=((n2—>5)+1)/2 and so J — {u,v, v, } is hamiltonian connected.
Clearly, for each y € {ug, 2z} d(y,J — {u,v,v.}) > [(na+3)/2] =5 > 1 as
ng > 8. Thus if Go — {u, v} + {uo, 21} & Ha, then d(y, J — {u,v,v,})) =1 for
each y € {ug, z;}. Consequently, ny < 9. As d2(G2) > [(na + 2)/2], it follows
that J is complete and obviously Ga — {u, v} + {uog, 21} € Ha, a contradiction.
Hence the claim holds. g

Therefore H — z;+u+v ¢ H; for all u,v € V(J —v,) with u # v. For each
vertex v € V(J — v,), it is easy to see that uv € E for some u € N(z1,J — v,.)
since d(z1,G2) > (n2 + 3)/2 and d(v,J) > (n2 + 2)/2. Therefore d(z;—1,J —
vy) = 0 for otherwise H — z; + u + v € H; for some v € N(z;—1,J — v,) and
uw € N(z1,J — ) with wv € E. Thus d(z;-1,H — z) > (n1 +n2+4)/2 -5 =
(n1 4+ n2)/2 — 3. Let wv € E(J — v,) with uz; € E. Clearly, d(v,H — z) >
(n14+ng+4)/2—(r—1)—2 = (n1—n2)/24+3. Thus d(vz_1, H—2z;) > (I-1)+2.
By Lemma 3.2(d), H — z; + v has an e;-hamiltonian path from z; to v and so
H — z; +u+v € Hyq, a contradiction. This proves the lemma. O

Proof of Lemma 2.5. Choose v' € J*. Then d(v'v,,,G1) > n1+na+4— (ng—
1) = ny +5. Thus i(v'vn,,G1) > 5. By Lemma 2.4, G; — u ¢ Py for all
u € I(v'vp,, G1) — V(e1). Therefore Gy ¢ H1. By Property B, P;(G1) # 0.
We claim §1(G1) < (n1 —1)/2. To see this, say 6;(G1) > ny1/2. Choose any
path from P;(G;) and then apply Lemma 3.5(c) with this path in G;. As
d(Vny, G1) > (N1 +n2 +4)/4 — 2 = (n1 + n2)/2, we see that Gy has an z-y
er-hamiltonian path such that y & V(ey), d(y,G1) = n1/2 and yv,, € E. As
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d(y,G2) > (na+4)/2, d(y, J*) > 0 and so G + y € Ha, contradicting Lemma
2.4. (I

Proof of Lemma 2.6. The statement (a) is evident by the definition of (Gg;_1,
G2;)(1 < i < k). We show (b) by contradiction. Say on the contrary that
d('U,GQi) < (|G21| + 3)/2 for some v € SQ(GQi) and ¢ € {1,...,k}. Let 4
be minimal. Then d(’U,GQi,1> > (|G2i,1| + 1)/2 and so Gyi_1 +v € Py by
Lemma 3.2(a). As P3(Ga;) = 0, P5(Go; —v) = 0. By the maximality of
e(Ga(i—1)—1) + e(G2(i—1)), we shall have
e(Gagi— ) +e(Gagi-1))
e(Gai—1 Jr v) + e(Ga; — v)
e(Gai—1) + e(Ga) — (|G2i| + 3)/2 + (|Gai—1| + 1)/2.
Let P = vgvg—1---v1 be an optimal path at ex = vyv4—1 in Gg(i,l), where
= |Ga-1)l- Say a(Pv1) = r. As 02(Gaii-1)) = (|G2i-1)| +4) and
P35 (Gai—1)) = 0, we see that vivy---v,v1 is an end-cycle at v, in Ga(;_1).
As d(’wifl, G2(i—1)> > (|G2(i—1)| + 5)/2 and G2(i—1) + w;—1 Q Ha, we see that
P35 (Ga(i—1) +wi—1) = 0. By the maximality of e(G2;—1) +e(G2;), we shall have
e(Gai—1) + e(Ga;)
> e(Gagi—1)—1 — wi—1) + e(Gag—1) + wi—1)
> e(Gagi—1)—1) +e(Gai-1)) — (|Ga@i—1)=1] = 1)/2 + (|G2@i=1) +5)/2.
By (4) and (5), we see that
e(Gagi—1y—-1) + e(Gai—1y) > e(Gai—1y—1) + e(Gai-1)),

a contradiction. O

(4)

2
2

(5)

Proof of Lemma 2.7. On the contrary, say the claim fails. Let xg € V(Gak-1)
such that Gog—1 — 2o € P1, Gar + o € He and d(xo, R’ — {y1,yr-1}) > 0. Let
Yo € V(R') —{y1,yr—1} with zoy. € E. Since Gar + 9 € Ha and P (Gax) = 0,
either xoy; € F or zoy;—1 € F with yy;_o € E. Say without loss of generality
zoy: € F.

Set H=Gop—1 —axoand p=|H|=s—1. Ass>tandt—1>r, for each
y € VR, dly, H) > [(s+1+4)/2— (r — 1) — d(y,20)] > 3.

Assume for the moment that for every P € P1(H), d*(P, H) > p+2 for each
P € Pi(H). By Lemma 3.3, H € H;. By Lemma 3.7, d(uv, H) > p + 2 for
all u,v € V(H) with u # v and {u,v} # V(e1). Let y; and y; be two distinct
vertices of R’ — y. such that {v;,y;} # {v1,y-—1} and y;y; € E. Let C be
an ej-hamiltonian cycle of H. Then there is an orientation of C' such that for
some u,v € V(C) with u # v and V(e1) # {u,v}, we have e; &€ {uut,vv™}
and {y;u™,y;vt} C E. Let y € N(y,,R' — y.) be such that v & {v;,y;}.
By Lemma 3.6, H has a u™-v™ ej-hamiltonian path. Since Theorem B holds
for R', R’ has two disjoint paths P” and P’ such that |P”| = ny —p, |P'| =
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r—1—|P"|, P" is from y; to y; and P’ is from ¢’ to y.. Thus [H, P"] € H; and
Gap — V(P") + xp € Ha, i.e., G contains two required cycles, a contradiction.
Therefore d*(P,H) < p+ 1 for some P € Py(H). Say P = z1---z,. First,
assume that d(y;, z12,) > 0 for some y; € V(R') — {y1,¥yr—1, yc}. Say without
loss of generality z1y; € E. Then y;2, ¢ E. If there exists z,y; € E for
some y; € N(y;, R') — {y.}, then we obtain the two required cycles as above.
Therefore z,y; & E for all y; € N(y;, R')—{yc}. Thus d(zp, R) < r—(d(y;, R)—
2) and so d(zp,Gar) < t —r +1r — (d(y;, R) —2) = t —d(y;,R) + 2. As
d(yi,R) > (t +4)/2, d(zp, Gar) < t/2. Therefore d(z,, H) > (s +t+4)/2 —
t/2 — d(zp, o) > (s + 2)/2. Similarly, if 2,51 € E, then 21y, ¢ E for each
Ya € N(y1, R = {yr—1,yc}). Consequently, d(z1, R) <7 — (d(y1, R) — 3) and
d(z1,Gar) <t —d(y1,R) +3 < (t +2)/2. It follows that d(z1, H) > s/2 and
so d(z12zp, H) > s +1 = p+ 2, a contradiction. Therefore z,y; ¢ E. Similarly,
zpyr—1 € E. Thus N(zp,R) C {yr,y.} and so d(zp,Gar) < t —r + 2. Let
y; € N(yi, R') —{yc}. Then d(zpy;,Gar) <t —r+2+r—1=1t+1. Thus
d(zpyj, H) > s+t+4—(t+1)—d(zo, 2py;) > p+2. By Lemma 3.2(d), H+y;
has a z1-y; e;-hamiltonian path and so H + y; + y; has a y;-y; e;-hamiltonian
path. As above, we see that G contains two required cycles, a contradiction.
Therefore N(z1,R) U N(zp, R) C {y1,¥%r—1,Yr,Yc} and so d(z12p, Ga) <
2t —r)+ 8. Asr > 02(Gak) + 1 > (t+6)/2, we get d(z12p, Gar) < t+ 2.
Therefore p +1 > d(z12p, H) > s+t +4 — (t +2) — d(zo, z12p) > p+ 1.
This implies that N(z1,R) = N(zp, R) = {y1,¥r—1,Yr,Ye}, 7 = (t + 6)/2 and
R = K(i16)/2- It follows that G contains two required cycles as above. (Il
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