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SPECTRAL RADIUS OF BIORTHOGONAL WAVELETS

WITH ITS APPLICATION

Qingyun Zou, Guoqiu Wang, and Mengyun Yang

Abstract. In this paper, a 2-circular matrix theory is developed, and
a concept of spectral radius for biorthogonal wavelet is introduced. We
propose a novel design method by minimizing the spectral radius and ob-
tain a wavelet which has better performance than the famous 9-7 wavelet
in terms of image compression coding.

1. Introduction

Over the last two decades, wavelets have become a fundamental tool in many
areas of applied mathematics and engineering ranging from signal and image
processing to numerical analysis. In her celebrated paper [2], Daubechies in-
troduced a general method to construct compactly supported wavelets. It is
well known that 2-band orthogonal wavelet suffers from severe constraint con-
ditions. For instance, nontrivial symmetric 2-band orthogonal wavelet does
not exist except the Haar wavelet [3]. Biorthogonal wavelet enjoy two im-
portant properties of linear phase and higher vanishing moments, was studied
[4, 8, 11, 12]. Vetterli and Herley studied theory and design for biorthogonal
wavelet [9] and Cohen gave another biorthogonal wavelet family [6]. Guoqiu
Wang constructed wavelet filters with free paraments based on 2-circular ma-
trix method [1]. Even though the research on biorthogonal wavelet is relatively
mature, further study is still valuable.

Let (ψ, ψ̃) be a pair of dual wavelet functions,

(1.1) ψj,k(x) = 2j/2ψ(2j/2x− k), j, k ∈ Z,

(1.2) ψ̃j,k(x) = 2j/2ψ̃(2j/2x− k), j, k ∈ Z.
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Here {ψj,k} and {ψ̃j,k} constitute wavelet frames, respectively, if there exist

positive real numbers A, B, Ã and B̃ such that

(1.3) A‖f‖2 ≤
∑

j,k

|〈f, ψj,k(x)〉|2 ≤ B‖f‖2,

(1.4) Ã‖f‖2 ≤
∑

j,k

|〈f, ψ̃j,k(x)〉|2 ≤ B̃‖f‖2

for all f ∈ L2(R).
(1.3) and (1.4) show that the energy of biorthogonal wavelet transform is

controllable although it is not conservative. However, while B − A or B̃ − Ã
are rather large, the biorthogonal wavelet transform may be unstable. i.e., the
energy is amplified in some cases and compressed in other cases.

In view of potential applications, estimating the bounds of sub-band operator
could be more important. Let’s recall the sub-band coding scheme or Mallat
algorithm associated to a biorthogonal wavelet. There are four sequences h =

(hn)n∈Z , g = (gn)n∈Z , h̃ = (h̃n)n∈Z , g̃ = (g̃n)n∈Z , two of which are used for

decomposition {h, g} and two for reconstruction {h̃, g̃}. Starting from a data
sequence c0 = (c0n)n∈Z , we convolve with h, g and retain only one sample out
of every two for the decomposition:

(1.5)
c1n =

∑
k h2n−kc

0
k,

d1n =
∑

k g2n−kc
0
k.

The reconstruction operation is

(1.6) c0k =
∑

n

(h̃2n−kc
1
n + g̃2n−kd

1
n).

(1.5) and (1.6) can be rewritten as the form of 2-circular matrix [10], which
can be defined by the 2-circular operator. Let v = (v1, v2, v3, . . . , vn). Define

σ0(v) = v, σ(v) = (vn−1, vn, v1, v2, v3, . . . , vn−2), σ
k(v) = σk−1(σ(v)).

If v = (h0, h1, h2, . . . , hp, 0, . . . , 0, h−p+1, . . . , h−1) and u = (g0, g1, g2, . . . , gq, 0,
. . . , 0, g−q+1, . . . , g−1) are two 2n-dimensional row vectors, then

M2n =




σ0(v)
σ1(v)

...
σn−1(v)
σ0(u)
σ1(u)

...
σn−1(u)



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is called the 2-circular matrix generated by {h, g}. An example is as follows:

M8 =




h0 h1 h2 h3 0 0 h−2 h−1

h−2 h−1 h0 h1 h2 h3 0 0
0 0 h−2 h−1 h0 h1 h2 h3
h2 h3 0 0 h−2 h−1 h0 h1
g0 g1 g2 g3 0 0 g−2 g−1

g−2 g−1 g0 g1 g2 g3 0 0
0 0 g−2 g−1 g0 g1 g2 g3
g2 g3 0 0 g−2 g−1 g0 g1




.

If c0 is a periodic signal, we rewrite c0 = (c01, c
0
2, . . . , c

0
2n)

T , which is a whole
period.

Let c1 = (c11, c
1
2, . . . , c

1
n, d

1
1, d

1
2, . . . , d

1
n)

T . Then there exists a 2n × 2n 2-
circular matrix M2n generated by {h, g} such that

(1.7) c1 =M2nc
0.

It is easy to see that (1.7) is equivalent to (1.5). Let

(1.8) c0 = M̃T
2nc

1,

where M̃2n is a 2-circular 2n× 2n matrix generated by {h̃, g̃}.
Clearly, (1.8) is equivalent to (1.6). Then,

(1.9) ‖c1‖2 = (c1)T c1 = (c0)T (MT
2nM2n)c

0.

Since MT
2nM2n is a positive definite matrix, its eigenvalues λi (i = 1, 2 . . . , 2n)

are positive and there exists an orthonormal matrix Q such that

(1.10) MT
2nM2n = QTdiag(λ1, λ2, . . . , λ2n)Q.

Let s = Qc0 = (s1, s2, . . . , s2n)
T . Then‖s‖2 = ‖c0‖2. It follows from (1.9) and

(1.10) that

‖c1‖2 = (Qc0)T diag(λ1, λ2, . . . , λ2n)(Qc
0) =

2n∑

i=1

λis
2
i .

Thus,

(1.11) min{λi}‖c0‖2 ≤ ‖c1‖2 ≤ max{λi}‖c0‖2.
Similarly,

(1.12) min{λ̃i}‖c0‖2 ≤ ‖c1‖2 ≤ max{λ̃i}‖c0‖2,
where λ̃i (i = 1, 2 . . . , 2n) are the eigenvalues of M̃T

2nM̃2n.
Instead of estimating the bounds in (1.3) or (1.4), we try to calculate the

eigenvalues of MT
2nM2n or M̃T

2nM̃2n. It has been shown that the eigenvalues of

MT
2nM2n appear in pairs of reciprocal, MT

2nM2n and M̃T
2nM̃2n have the same

eigenvalues (cf. [12, Section 2]). It is obvious that max{λi} = max{λ̃i} =
1

min{λi} = 1

min{λ̃i}
.
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Note that c0 only has finite length in (1.11). If c0 ∈ l2, we shall investigate
the limit limn→+∞ max{λi} to directly evaluate or examine the performances
of filters, which is called the spectral radius of the biorthogonal wavelet in this
paper.

This paper is organized as follows. In Section 2, we develop some results
of the transform matrix, define the concept of spectral radius and prove the
existence and uniqueness. An example is provided to illustrate our results in
this paper. In Section 3, we propose a novel design method for constructing
biorthogonal wavelets and obtain a wavelet with better performance of image
compression. Conclusions are summarized in Section 4.

2. Spectral radius of biorthogonal wavelet

Assume that the low pass filters are FIR and symmetric. In addition, we
assume

(2.1)
∑

k

hk =
∑

k

h̃k =
√
2

and let

(2.2)
gk = (−1)(1−k)h̃1−k,
g̃k = (−1)(1−k)h1−k.

Then

(2.3)

∑
k h2k =

∑
k h2k+1 =

√
2
2 ,∑

k h̃2k =
∑

k h̃2k+1 =
√
2
2 .

The perfect reconstruction condition is equivalent to the following equation

(2.4)
∑

k

hkh̃k+2j = δj ,

where δj is the Dirac sequence, i.e., δj = 1 for j = 0 otherwise δj = 0.
Define

(2.5) bk =
∑

i

hihi+2k, b̃k =
∑

i

h̃ih̃i+2k.

Since h and h̃ are the FIR filters, let d1, d2 be the maximal positive integers

such that bd1
=
∑

i hihi+2d1
6= 0 and b̃d2

=
∑

i h̃ih̃i+2d2
6= 0, respectively.

Define

(2.6) un,j = (b0 + b̃0) + 2

d∑

i=1

(bi + b̃i) cos

(
2πij

n

)
1 ≤ j ≤

[n
2

]
,

(2.7) u0 =

(
(b0 + b̃0) + 2

d∑

i=1

(−1)i(bi + b̃i)

)
,

where d = max {d1, d2} and [x] denotes the largest integer less than or equal
to x.
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We first present our main theorem of this paper based on a 2-circular matrix
theory.

Theorem 2.1. Assume that M2n = [HG ] is a 2-circular matrix generated by

{h, g}, where H and G are n× 2n 2-circular matrices. Then the characteristic

polynomial of M2nM
T
2n is

(2.8)

p(λ) =

{
(λ − 1)2

∏r
j=1

(
λ2 − un,jλ+ 1

)2
n = 2r + 1;

(λ − 1)2(λ2 − u0λ+ 1)
∏r

j=1

(
λ2 − un,jλ+ 1

)2
n = 2r + 2,

where ω = cos(2πn ) + i sin(2πn ), i is the imaginary unit.

To prove Theorem 2.1, we need some results as follows.

Proposition 2.2.

(2.9)
∑

k

bk = 1,
∑

k

b̃k = 1,

where bk and b̃k are defined in (2.5).

Proof.
∑

k

bk =
∑

k

∑

i

hihi+2k =
∑

i

h2i +
∑

k>0

∑

i

hihi+2k +
∑

k<0

∑

i

hihi+2k

=
∑

i∈2Z+1

h2i + 2
∑

k>0

∑

i∈2Z+1

hihi+2k +
∑

i∈2Z

h2i + 2
∑

k>0

∑

i∈2Z

hihi+2k

=

(
∑

i∈2Z+1

hi

)2

+

(
∑

i∈2Z

hi

)2

.

It follows from (2.3) that
∑

k bk = 1. Similarly,
∑

k b̃k = 1. �

Proposition 2.3. MT
2nM2n,M2nM

T
2n, M̃

T
2nM̃2n, M̃2nM̃

T
2n have the same eigen-

values.

Proof. Note that MT
2nM2n and M̃T

2nM̃2n have the same eigenvalues (cf. [12,
Section 2]). The proof of the others is trivial. �

Proposition 2.4. Assume that bothM2n = [HG ] and M̃2n =
[
H̃
G̃

]
are 2-circular

matrices generated by {h, g} and {h̃, g̃}, respectively, where H,G, H̃, G̃ are all

n× 2n 2-circular matrices and n is large enough. Then

(1) HHT , HGT , GHT , GGT , H̃H̃T , H̃G̃T , G̃H̃T , G̃G̃T are all 1-circular

matrices.

(2) HHTGGT −HGTGHT = In.

Proof. (1) The element at the jth row and the kth column in HHT can be
written as ∑

i

hi+2jhi+2k =
∑

i

hi+2(j+1)hi+2(k+1).
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Since
∑

i hi+2(j+1)hi+2(k+1) is the element at the (j+1)th row and the (k+1)th

column in HHT , it is easy to see that HHT is a 1-circular matrix. The proof
of the others is similar.

(2) Note that (MT
2nM2n)(M̃

T
2nM̃2n) = In. It implies

(2.10) (HHT )(H̃H̃T ) + (HGT )(G̃H̃T ) = In

and

(2.11) (HHT )(H̃G̃T ) + (HGT )(G̃G̃T ) = On,

where On denotes an n× n zero matrix.
Firstly, we verify that

(2.12) GGT = H̃H̃T , HHT = G̃G̃T , HGT = −G̃H̃T , H̃G̃T = −GHT .

In fact, the element in GGT can be written as
∑

i

gi+2jgi+2k =
∑

i

(−1)1−i−2j h̃1−i−2j(−1)1−i−2kh̃1−i−2k

=
∑

i

h̃i−2j h̃i−2k =
∑

i

h̃i+2j h̃i+2k.

It is just the element in H̃H̃T at the same position. Thus, GGT = H̃H̃T holds.
Similarly, the others in (2.8) can be verified.
Note that if A and B are 1-circular matrices, then AB and A ± B are 1-

circular matrices, moreover, AB = BA (cf. [5, Section 2]).
It follows from (2.11) and (2.12) that

On = (HHT )(H̃G̃T ) + (HGT )(G̃G̃T ) = (HHT )(H̃G̃T ) + (G̃G̃T )(HGT )

= (G̃G̃T )(H̃G̃T ) + (G̃G̃T )(−G̃H̃T ) = (G̃G̃T )[(H̃G̃T )− (G̃H̃T )].

Since M2nM
T
2n is a positive definite matrix, and its principal minor determi-

nants are all positive, we have det(HHT ) = det(G̃G̃T ) > 0, thus, G̃H̃T =

H̃G̃T .
Finally, by (2.10) and (2.12), we have

(HHT )(GGT )− (HGT )(GHT ) = (HHT )(H̃H̃T ) + (HGT )(H̃G̃T )

= (HHT )(H̃H̃T ) + (HGT )(G̃H̃T ) = In.

The proof is completed. �

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The characteristic polynomial of M2nM
T
2n is

p(λ) = det
(
M2nM

T
2n − λI2n

)
= det

(
HHT − λIn HGT

GHT GGT − λIn

)
.

Note that if AC = CA, then

det

[
A B
C D

]
= det (AD − CB) ,
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which is a simple result in linear algebra.
Thus,

p(λ) = det
((
HHT − λIn

) (
GGT − λIn

)
−GHTHGT

)

= det
(
λ2In − λ(HHT +GGT ) +HHTGGT −GHTHGT

)
.

By Proposition 2.4, we have

(2.13) p(λ) = det
(
λ2In − λ(HHT +GGT ) + In

)
.

It is simple to verify that HHT , H̃H̃T are n× n 1-circular matrices generated

by (b0, b1, . . . , bd1
, 0, . . . , 0, bd1

, . . . , b1) and (̃b0, b̃1, . . . , b̃d2
, 0, . . . , 0, b̃d2

, . . . , b̃1),

respectively, where bk and b̃k are defined in (2.5).
Note that λ2In−λ(HHT +GGT )+ In is also a 1-circular matrix. We define

(2.14) f(x) = a1 + a2x+ a3x
2 + · · ·+ ad+1x

d + ad+1x
n−d + · · ·+ a2x

n−1,

where a1 = λ2 − (b0 + b̃0)λ + 1, ai+1 = −(bi + b̃i)λ (1 ≤ i ≤ d).
By the property of 1-circular matrix determinant in [5], we have

p(λ) =

{
f(1)

∏r
j=1

∣∣f(ωj)
∣∣2 n = 2r + 1;

f(1)f(−1)
∏r

j=1

∣∣f(ωj)
∣∣2 n = 2r + 2,

where ω = cos(2πn ) + i sin(2πn ).
Since

f(1) = λ2 − λ

(
(b0 + b̃0) + 2

d∑

i=1

(bi + b̃i)

)
+ 1 = λ2 − λ

(
∑

i

(bi + b̃i)

)
+ 1,

by Proposition 2.2, we have

(2.15) f(1) = λ2 − 2λ+ 1.

Using the formulas

cos(
2π(n− k)j

n
) = cos(2πj − 2πkj

n
) = cos(

2πkj

n
)

and

sin(
2π(n− k)j

n
) = sin(2πj − 2πkj

n
) = − sin(

2πkj

n
),

we have
∣∣f(ωj)

∣∣2

=
∣∣∣a1 + a2ω

j + a3ω
2j + · · ·+ ad+1ω

dj + ad+1ω
(n−d)j + · · ·+ a2ω

(n−1)j
∣∣∣
2

=

(
a1 + a2 cos(

2πj

n
) + · · ·+ ad+1 cos(

2πdj

n
) + ad+1 cos(

2π(n− d)j

n
) + · · ·

+a2 cos(
2π(n− 1)j

n
)

)2
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+

(
a2 sin(

2πj

n
) + · · ·+ ad+1 sin(

2πdj

n
) + ad+1 sin(

2π(n− d)j

n
) + · · ·

+a2 sin(
2π(n− 1)j

n
)

)2

=

(
a1 + 2a2 cos(

2πj

n
) + · · ·+ 2ad+1 cos(

2πdj

n
)

)2

=

(
λ2 − λ

(
(b0 + b̃0) + 2

d∑

i=1

(bi + b̃i) cos

(
2πij

n

))
+ 1

)2

,

i.e.,

(2.16)
∣∣f(ωj)

∣∣2 =

(
λ2 − λ

(
(b0 + b̃0) + 2

d∑

i=1

(bi + b̃i) cos(
2πij

n
)

)
+ 1

)2

,

where un,j is defined by (2.6).
If n = 2r + 2, let x = −1 in (2.14), then

(2.17) f(−1) = λ2 − λ

(
(b0 + b̃0) + 2

d∑

i=1

(−1)i(bi + b̃i)

)
+ 1 = λ2 − u0λ+ 1,

where u0 is defined by (2.7). The proof is completed. �

Definition 2.5. Let M be an n× n matrix with real elements, and λ(M) be
all eigenvalues of MMT . Then λ(M) is called the spectrum of matrix M , and
ρ(M) = max

i
|λi| is called the spectral radius of M .

Theorem 2.6. ρ(M2n) → β(n → +∞), where β is a finite positive real num-

ber.

Proof. Define

g(x) = (b0 + b̃0) + 2(b1 + b̃1) cosx+ · · ·+ 2(bd + b̃d) cos(dx), x ∈ [0, π].

By (2.6), g(x) is a continuous function in [0, π]. Therefore, there exists an
x0 ∈ [0, π] such that

g(x0) = max
x∈[0,π]

{g(x)}.

Define

An =

{
2πj

n
, j = 1, 2, . . . , [n/2]

}
.

For x0 ∈ [0, π], there exists an xn = 2πjn
n ∈ An such that when n → +∞,

xn → x0. Thus,

g(xn) → g(x0) (n → +∞).
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Note that un,jn = g
(
2πjn
n

)
,

√
x2−4
2 (x > 2) is a monotonously increasing func-

tion, and

un,jn +
√
u2n,jn − 4

2
≤ ρ(M2n) ≤

g(x0) +
√
g2(x0)− 4

2
= β.

This leads to ρ(M2n) → β(n→ +∞). The proof of this theorem is completed.
�

Definition 2.7. β = limn→+∞ ρ(M2n) is called the spectral radius of a biortho-
gonal wavelet.

Now we go back to (1.5) and (1.12). By Theorem 2.6, we can obtain the
following theorem directly.

Theorem 2.8. Let c0 = (c0n)n∈Z ∈ l2, c1 = (. . . , c11, c
1
2, . . . , c

1
n, . . . , d

1
1, d

1
2, . . .,

d1n, . . .). Define a operator T : Tc0 = c1, where c0 and c1 are defined by (1.5).
Then

(2.18)
1√
β
‖c0‖ ≤ ‖Tc0‖ ≤

√
β‖c0‖.

In the rest of this section, we will illustrate our results by an example. The
well-known 9-7 wavelet, which was studied thoroughly by Cohen et al. [1], is
denoted as CDF 9-7. In this example, d = 4, numerical computation gives

λ(M18) = {0.7720, 0.7720, 0.8561, 0.8561, 0.8980, 0.8980, 0.9545, 0.9545, 1, 1,
1.0477, 1.0477, 1.1136, 1.1136, 1.1681, 1.1681, 1.2953, 1.2953},

λ(M20) = {0.7567, 0.8025, 0.8025, 0.8751, 0.8751, 0.9053, 0.9053, 0.9617,
0.9617, 1, 1, 1.0399, 1.0399, 1.1045, 1.1045, 1.1427, 1.1427, 1.2460,

1.2460, 1.3216}.
We can also calculate that

b0 + b̃0 ≈ 2.0234, b1 + b̃1 ≈ −0.0159, b2 + b̃2 ≈ 0.0064, b3 + b̃3 ≈ −0.0036,

b4 + b̃4 ≈ 0.0014, and un,j → u (u ≈ 2.078) (j = [n/2], n→ +∞).

Thus, β ≈ 1.3216.

3. A design method based on minimizing spectral radius

Define

(3.1)
m0(ξ) = 2−1/2

∑
n hne

−inξ,

m̃0(ξ) = 2−1/2
∑

n h̃ne
−inξ.

Assume that (3.1) can be factored as

(3.2)
m0(ξ) =

(
1+e−iξ

2

)L
F (ξ),

m̃0(ξ) =
(

1+e−iξ

2

)L̃
F̃ (ξ).
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The idea of classical design method for biorthogonal wavelet is to choose

as high (L, L̃) as possible in (3.2)(CDF9-7 was successfully designed in [1]).
Applying this method to 8-8-tap wavelets, we obtain an 8-8-tap wavelet denoted
as OR (8-8):

h =
√
2(0.0534975,−0.0872258,−0.0692208, 0.602949),

h̃ =
√
2(−0.0228179,−0.0372038, 0.133432, 0.42659),

(whereas the other half is symmetric and so skipped), and the highest (L, L̃) =
(5, 3). However, this wavelet is not as good as CDF9-7 in terms of image
compression. Computation shows that its spectral radius is slightly large, see
Table 1.

Table 1. Spectral radius

Wavelets spectrum radius β β
1

2

OR8-8 2.6432 1.6258
OP8-8 1.7612 1.3271
OP12-8 1.4714 1.2130
OP16-8 1.3824 1.1758
CDF9-7 1.3216 1.1496

From (2.18), it is obvious that T is a unitary operator if and only if
√
β = 1.

If T is derived from a biorthogonal wavelet, then it is not a unitary operator.
In order to keep the stability of transform, we hope the operator is as near a
unitary one as possible, i.e.,

√
β is as near 1 as possible. Based on this idea,

we can minimize the spectral radius to obtain some biorthogonal wavelets.

Now we relax the condition of the highest L̃, for example, let L̃ decrease to
1 from 3 in the case of 8-8-tap. Then we can use an extra degree of freedom to
minimize the spectral radius.

Assume that a wavelet system contains a vector of s variables, which is

represented by X = (x1, x2, . . . , xs). Then h, h̃, bk and b̃k in (2.5), un,j in (2.6)
are functions of X . To formulate the optimization problem, define

un,0 =

{
0, n = 2r + 1;
u0, n = 2r + 2,

where u0 is defined by (2.7). Consider the optimization problem for a large
enough n as follows:

(3.3) un = min
X

{ max
0≤j≤r

{un,j}}.

Let βn =
un+

√
u2
n−4

2 . Then the limit of βn is the spectral radius. In fact, the
optimization process stops whenever |βn+1−βn| < ε, where ε > 0 is given. We
take ε = 10−5 for numerical computations in this paper. Generally speaking, n
has to be larger than 400. Obviously, the optimization process is very complex
and only approximate solutions can be obtained.
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Applying the same process to 8-8-tap, 12-8-tap and 16-8-tap wavelets, we
obtained three optimal wavelets with other half symmetric part skipped as
before.
OP8-8:
h ≈

√
2(0.10588478,−0.21250827, 0.13072889, 0.47589460),

h̃ ≈
√
2(−0.03146955,−0.06315864, 0.12478045, 0.46984774),

with (L, L̃) = (5, 1).
OP12-8:
h ≈

√
2(0.01438339,−0.03075211, 0.10103289,−0.12189856, 0.05633416,
0.48090023),

h̃ ≈
√
2(−0.03625410,−0.07751231, 0.11999590, 0.49377051),

with (L, L̃) = (5, 1).
OP16-8:
h ≈

√
2(0.00720413,−0.0156142,−0.00506077, 0.0575831, 0.00975006,
−0.0917248, 0.0684645, 0.469398),

h̃ ≈
√
2(−0.037533,−0.0813489, 0.118717, 0.500165),

with (L, L̃) = (5, 3). See Fig. 1 for the graphs of the scaling functions and
wavelets in this example.
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Fig. 1. OP16-8: φ, φ̃ a dual scale functions; ψ, ψ̃ a dual wavelet functions.

In order to test the performance of these wavelets, we apply the SPIHT
algorithms [7] to the experiments of image compression coding. In these exper-
iments, we use the typical and standard test images such as Lena and Barbara,
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which are decomposed 5 levels, with the Huffman entropy coding technologies.
The PSNR (dB) is used to evaluate the quality of decoded images. From the
test results in Table 2 and Table 3, we can see that the OP16-8 has significant
advantage in image compression coding. In fact, OP16-8 is superior for almost
all test images, with further details of test skipped due to space limit.

Note that, in general, smaller norm does not necessarily make the perfor-
mance better. A counter example is Haar wavelet with obviously poor per-
formance. As the optimization procedure is applied to the wavelet systems
with even lengths filters, the smallest spectral radius must be 1 if no other
constraints imposed on the filters. Usually, the high vanishing moments are
necessary.

Table 2. Test results for Lena
1:4 1:8 1:16 1:32

OR8-8 43.51 39.24 36.06 32.79
OP8-8 43.97 39.53 36.33 33.10
OP12-8 44.33 39.82 36.53 33.35
OP16-8 44.73 40.11 36.81 33.58
CDF9-7 44.52 40.03 36.78 33.54

Table 3. Test results for Barbara
1:4 1:8 1:16 1:32

OR8-8 41.35 34.90 29.64 25.69
OP8-8 41.61 35.51 30.24 26.51
OP12-8 41.78 35.76 30.60 26.87
OP16-8 42.44 36.45 31.38 27.45
CDF9-7 42.22 36.01 30.99 27.20

4. Conclusions

Algebraic methods are often effective in studying the wavelet problems. In
this paper, an important index of spectral radius for biorthogonal wavelet is
proposed based on the eigenvalue-method. It provides us another viewpoint to
examine and evaluate the wavelets. The circular matrix theory is no doubt an
effective tool in wavelet analysis. The concepts, results and method proposed
in this paper could be helpful for the estimate of bounds of wavelet frames.

Acknowledgments. The authors would like to thank the editors and review-
ers for their valuable comments, which greatly improved the readability of this
paper.
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