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A MULTIVARIABLE MAYER-ERDÖS PHENOMENON

Xianchang Meng and Alexandru Zaharescu

Abstract. In this paper we consider a generalization of the Mayer-Erdös
phenomenon discussed in [12] to linear forms in a larger number of vari-
ables.

1. Introduction

Let Q be a positive integer. The Farey series FQ of order Q consists of
reduced fractions between 0 and 1 whose denominators do not exceed Q. For
the basic properties of Farey series, the reader is referred to Hardy and Wright
[9], Chapter 3. Let N(Q) denote the number of elements of FQ. We write these
elements in increasing order,

γ1 =
a1
q1

< γ2 =
a2
q2

< · · · < γN(Q) =
aN(Q)

qN(Q)
.

Hardy, Littlewood and Pólya [8] proposed the concept of similar ordering
for pairs of rational numbers, as follows. If all the reduced fractions r = a

q
and

r′ = a′

q′
satisfy

(a− a′)(q − q′) ≥ 0,

then r and r′ are said to be similarly ordered.
Mayer [10] proved that the first and second neighbors in any Farey series are

similarly ordered, and he also proved the similar ordering of the third neighbors
with the exception of F4. Hardy suggested and Mayer [11] confirmed that the
k-th neighbors are similarly ordered, with a finite number (depending only on
k) of exceptions. Mayer showed the following:

Given a positive integer k, there exists a number Q(k) such that for any

Q > Q(k), and any 1 ≤ j < j′ ≤ N(Q) with j′ − j ≤ k, the numbers
aj

qj
and

aj′

qj′
are similarly ordered.

Erdös [7] established a vast improvement of Mayer’s result:
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There exists an absolute constant C > 0 such that, for any positive integer

Q and any 1 ≤ j < j′ ≤ N(Q) for which j′ − j < Q
C
, the fractions

aj

qj
and

aj′

qj′

are similarly ordered.

One of the authors [12] extended the result of Erdös by considering a general
linear form in two variables

L(X,Y ) = AX +BY,

and proving the following result:

There exists an absolute constant C > 0 such that, for any positive integers

D, Q, any integer numbers |A|, |B| ≤ D, and any 1 ≤ j < j′ ≤ N(Q) satisfying

the inequality j′ − j ≤ Q
CD2 , we have

(Aaj +Baj′)(Aqj +Bqj′ ) ≥ 0.

Note that the result by Erdös in [7] is for the case D = 1.
In the present paper, our goal is to extend the results further by considering

a general linear form in v variables. Let v ≥ 3 be an integer and let D be
a positive integer. Let {Ai}

v
i=1 be integers with |Ai| ≤ D for all 1 ≤ i ≤ v.

Consider the linear form,

L(x) :=

v
∑

i=1

Aixi = A1x1 +A2x2 + · · ·+Avxv,

where x := (x1, x2, . . . , xv).
For any v elements in the Farey series of order Q,

ar1
qr2

,
ar2
qr2

, . . . ,
arv
qrv

,

where 1 ≤ ri ≤ N(Q) (1 ≤ i ≤ v), we let a := (ar1 , ar2 , . . . , arv) and q :=
(qr1 , qr2 , . . . , qrv). Then, we have the following result:

Theorem 1. There exists a positive constant C = C(v) which only depends

on v such that, for any positive integers D and Q, any set of integers {Ai}
v
i=1

with |Ai| ≤ D satisfying:
1)
∑v

i=1 Ai 6= 0, and
2)
∑

i6=k Ai 6= 0 for any 1 ≤ k ≤ v,

and for any v-tuple 1 ≤ r1 < r2 < · · · < rv ≤ N(Q), with

rv − r1 ≤
Q

CD2
,

we have

L(a)L(q) =

(

v
∑

i=1

Aiari

)(

v
∑

i=1

Aiqri

)

≥ 0.
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Remark 1. If we let d =
∑v

i=1 Ai, the conditions 1) and 2) are equivalent
to: d 6= 0 and d /∈ {Ai}

v
i=1. One can use this statement to check if the Ai’s

satisfy the conditions from the statement of the theorem in concrete numerical
examples. In our proof, the conditions 1) and 2) are more convenient to use.

Remark 2. Surprisingly, as we shall see below, for v ≥ 3, counterexamples do
exist if one does not assume any one of the above two conditions. See Section
3 for the details.

We end this section with a discussion of a geometric interpretation of the
Mayer-Erdös phenomenon. There is a natural one-to-one correspondence be-
tween the set of Farey fractions of order Q and the set of visible lattice points
inside the triangle with vertices (0, 0), (Q, 0), (Q,Q), where a visible point
(q, a) corresponds to the Farey fraction a/q. In this correspondence, Farey
fractions are arranged in increasing order, and the visible points are arranged
in increasing order of the slope of the ray from the origin that passes through
them. Various problems where visible points play an important role have been
studied by a number of authors, see for example [1], [2], [3], [4], [5], [6], and the
references therein. A peculiar geometric aspect of the Mayer-Erdös phenom-
enon, which to our knowledge has not been exploited so far, is the following.
Consider, for any visible point (q, a) the coordinate system with horizontal and
vertical axes parallel to the initial ones, centered at the point (q, a). Then,
by the theorem of Erdös mentioned earlier, the first about a constant times Q
many visible points following (q, a) lie inside the first or third quadrant. The
same holds for the previous about a constant times Q many visible points which
appear before (q, a) in above ordering. The generalizations of Erdös’ theorem
obtained in [12] and in the present paper have similar geometric interpretations.

2. Proof of Theorem 1

If the Ai’s are all positive or all negative, the result is trivial. Let’s assume
that at least one of them is positive, and at least one of them is negative. Let
M be the number of positive coefficients, and N be the number of negative
coefficients, so M + N = v. We collect all the positive coefficients together,
and all the negative coefficients together. We then rearrange the indices, let
sj = rM+j , and write

L(a)L(q) =





M
∑

i=1

Aiari −

N
∑

j=1

Bjasj









M
∑

i=1

Aiqri −

N
∑

j=1

Bjqsj



 ,

where A1, . . . , AM , B1, . . . , BN are all positive integers.
Let us suppose that L(a)L(q) < 0. Let r = min{ri : 1 ≤ i ≤ v} and

s = max{ri : 1 ≤ i ≤ v}. We want to show that s− r > Q
CD2 for some constant

C = C(v). We distinguish two cases:
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Case I:














M
∑

i=1

Aiari −
N
∑

j=1

Bjasj ≤ −1,

M
∑

i=1

Aiqri −
N
∑

j=1

Bjqsj ≥ 1.

Case II:















M
∑

i=1

Aiari −
N
∑

j=1

Bjasj ≥ 1,

M
∑

i=1

Aiqri −
N
∑

j=1

Bjqsj ≤ −1.

Denote

∆(ri, sj) :=
qriasj − ariqsj

qriqsj
=

asj
qsj

−
ari
qri

,

and

∆ :=
as
qs

−
ar
qr

,

where r = min{r1, . . . , rM , s1, . . . , sN}, and s = max{r1, . . . , rM , s1, . . . , sN}.
We need an estimate for ∆.

2.1. A lower bound for ∆

We deal with Case I first. We have
M
∑

i=1

Aiqri ≥

N
∑

j=1

Bjqsj + 1,

and
N
∑

j=1

Bjasj ≥

M
∑

i=1

Aiari + 1.

Multiplying both sides of the above two inequalities, one has
(

M
∑

i=1

Aiqri

)





N
∑

j=1

Bjasj



 ≥





N
∑

j=1

Bjqsj + 1





(

M
∑

i=1

Aiari + 1

)

.

Then,

(2.1)

M
∑

i=1

N
∑

j=1

AiBj(qriasj − ariqsj ) ≥

M
∑

i=1

Aiari +

N
∑

j=1

Bjqsj + 1.

We divide by the product
∏

i,j

AiBjqriqsj on both sides of (2.1) to obtain

M
∑

i=1

N
∑

j=1

∆(ri, sj)
∏

k 6=i,l 6=j

AkBlqrkqsl
>

M
∑

i=1

γri
∏

k 6=i,l

AkBlqrkqsl
+

N
∑

j=1

1
∏

k,l 6=j

AkBlqrkqsl
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:= S1 + S2,

where γri =
ari

qri
, and S1 and S2 denote the first and respectively the second

sum on the right side above. Let

S =

M
∑

i=1

N
∑

j=1

1
∏

k 6=i,l 6=j

AkBlqrkqsl
.

Since ∆(ri, sj) ≤ ∆ for any i, j, we have ∆ · S > S1 + S2, so

(2.2) ∆ >
S1 + S2

S
.

For each 1 ≤ i ≤ M ,

S2 =

N
∑

j=1

1
∏

k,l 6=j

AkBlqrkqsl
≥

1

DQ

N
∑

j=1

1
∏

k 6=i,l 6=j

AkBlqrkqsl
.

We sum over i to obtain

MS2 ≥
1

DQ

M
∑

i=1

N
∑

j=1

1
∏

k 6=i,l 6=j

AkBlqrkqsl
=

1

DQ
S.

Thus,

(2.3)
S2

S
≥

1

DQM
.

Similarly, for each 1 ≤ j ≤ N ,

S1 =

M
∑

i=1

γri
∏

k 6=i,l

AkBlqrkqsl
≥

1

DQ

M
∑

i=1

γri
∏

k 6=i,l 6=j

AkBlqrkqsl
,

and summing over j, we have

NS1 ≥
1

DQ

M
∑

i=1

N
∑

j=1

γri
∏

k 6=i,l 6=j

AkBlqrkqsl

:=
1

DQ
Sγ .

So S1 ≥ 1
DQN

Sγ , and

(2.4)
S1

S
≥

1

DQN

Sγ

S
=

1

DQN
γ̃,

where γ̃ =
Sγ

S
. Since γri < 1, Sγ < S, so 0 < γ̃ < 1.

Combining (2.2), (2.3) and (2.4), we obtain

(2.5) ∆ >
1

DQ

(

1

M
+

γ̃

N

)

.
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For Case II, we only need to change the positions of ari and qri , and change
the positions of asj and qsj . The calculations are similar to those in Case I.
We find that

(2.6) ∆ >
1

DQ

(

1

N
+

γ̃′

M

)

,

where

γ̃′ =
Sγ′

S
, Sγ′ =

M
∑

i=1

N
∑

j=1

γsj
∏

k 6=i,l 6=j

AkBlqrkqsl
, γsj =

asj
qsj

,

and by the definition of S we see that 0 < γ̃′ < 1.
Hence, combining (2.5) and (2.6), in all cases we have,

(2.7) ∆ >
1

DQ(M +N)
=

1

vDQ
.

2.2. An upper bound for ∆

Let r = min{r1, r2, . . . , rv}, and s = max{r1, r2, . . . , rv}. We have

(2.8) ∆ =
as
qs

−
ar
qr

=

s
∑

j=r+1

(

aj
qj

−
aj−1

qj−1

)

=

s
∑

j=r+1

1

qjqj−1
.

Here, in the last equality, we used the property of Farey neighbors which states
that ajqj−1 − aj−1qj = 1.

Denote by j∗ the smallest element of the set {r, r + 1, . . . , s} for which the
equality

qj∗ = min{qj : r ≤ j ≤ s}

holds. In [12], part of the proof is independent of the linear form. We apply
that method to deal with some of our cases. Let T ≥ 1 be a parameter, whose
size will be determined later, and denote by r′1, . . . , r

′
t those elements from the

set {r, r + 1, . . . , s} for which

qr′
1
, qr′

2
, . . . , qr′t ≤

Q

T
.

We arrange the above numbers in increasing order, r′1 < r′2 < · · · < r′t. Next,
we distinguish several cases.

For the cases t = 0 and t ≥ 2, we apply the method from [12].

If t = 0, then qr, qr+1, . . . , qs > Q
T
, and since max{qj, qj−1} ≥

qj+qj−1

2 , we
have

1

qjqj−1
≤

2

(qj + qj−1)min{qj , qj−1}
<

2

Qmin{qj , qj−1}
.

Using (2.8) together with the above inequalities, we find that

∆ ≤
2T

Q2
(s− r).
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By (2.7), it follows in this case that

(2.9) s− r >
Q

2vTD
.

If t = 1, then r′1 = j∗, and by (2.11) of [12],

(2.10) ∆ ≤
2

qj∗ max{qj∗ , Q− qj∗}
+

2T (s− r − 1)

Q2
.

If t ≥ 2, assume T > 8, and then by (2.19) of [12], we have

∆ ·
Q

2

(

1−
8

T

)

≤
(s− r)T

Q
.

Using this formula and (2.7), we derive that

(2.11) s− r >
Q

2vTD

(

1−
8

T

)

.

By (2.9), (2.10) and (2.11), the proof of the theorem is finished in cases t = 0
and t ≥ 2 if we let T be a suitable constant. Moreover, case t = 1 is also done
provided that qj∗ is not very small.

2.3. Case t = 1

In the following, we deal with the case t = 1. Let T ′ ≥ 1 be another
parameter, and assume that qj∗ ≥ T ′D. By (2.21) in [12],

2

qj∗ max{qj∗ , Q− qj∗}
≤

2T

T ′(T − 1)DQ
.

Combining the above inequality, (2.7), and (2.10), we have

2T (s− r)

Q2
≥

1

vDQ
−

2T

T ′(T − 1)DQ
=

1

DQ

(

1

v
−

2T

T ′(T − 1)

)

.

Then,

(2.12) s− r >
Q

D

(

1

2vT
−

1

T ′(T − 1)

)

.

We now assume that qj∗ < T ′D. Consider the neighbors of
aj∗

qj∗
in the set of

Farey fractions of order Q with
u

v
<

aj∗

qj∗
<

z

w
.

By the argument in [12], we know that the first right neighbors of z
w

are

(2.13)
z − kaj∗

w − kqj∗
, k = 0, 1, 2, . . . ,

[

Q+ 1

2qj∗

]

− 1,

and the first left neighbors of u
v
are

(2.14)
u− k′aj∗

v − k′qj∗
, k′ = 0, 1, 2, . . . ,

[

Q+ 1

2qj∗

]

− 1.
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If
aj∗

qj∗
does not coincide with ar

qr
, and ar

qr
does not coincide with any of the

fractions from (2.14), then all these fractions lie between ar

qr
and as

qs
. We have

(2.15) s− r ≥

[

Q + 1

2qj∗

]

≥

[

Q+ 1

2T ′D

]

,

in this case, the conclusion of the theorem is satisfied. Similarly, if
aj∗

qj∗
does not

coincide with as

qs
, and as

qs
does not coincide with any fractions from (2.13), then

again, all these fractions lie between ar

qr
and as

qs
. We obtain the same result as

above.
Next we assume that ar

qr
coincides with

aj∗

qj∗
or one of the fractions from

(2.14), and as

qs
coincides with

aj∗

qj∗
or one of the fractions from (2.13). There are

two cases:

1)
aj∗

qj∗
/∈
{

ari

qri
: 1 ≤ i ≤ v

}

or 2)
aj∗

qj∗
∈
{

ari

qri
: 1 ≤ i ≤ v

}

.

2.3.1. Case 1). If
aj∗

qj∗
/∈
{

ari

qri
: 1 ≤ i ≤ v

}

, then each fraction
ari

qri
(1 ≤ i ≤ v)

has the form
z − kiaj∗

w − kiqj∗
or

u− kiaj∗

v − kiqj∗

for some integer ki ≥ 0. So, ari has the form

z − kiaj∗ or u− kiaj∗ ,

and qri has the form

w − kiqj∗ or v − kiqj∗ .

In the following, we want to estimate the size of ari and qri .
Since w+ qj∗ > Q, v + qj∗ > Q (see [9], Chapter 3), and by the assumption

qj∗ < T ′D, we have

w − kiqj∗ > Q− qj∗ − kiqj∗ > Q− (ki + 1)T ′D.

Similarly,

v − kiqj∗ > Q − qj∗ − kiqj∗ > Q− (ki + 1)T ′D.

So, we obtain, for any 1 ≤ i ≤ v,

(2.16) qri > Q− (ki + 1)T ′D.

Let γ =
aj∗

qj∗
. We know that

(2.17)
u

v
<

u+ aj∗

v + qj∗
<

aj∗

qj∗
<

z + aj∗

w + qj∗
<

z

w
.

Then,
aj∗

qj∗
−

u+ aj∗

v + qj∗
=

1

qj∗(v + qj∗)
<

1

Q
.

Therefore

u+ aj∗ > (v + qj∗)(γ −
1

Q
) > Q(γ −

1

Q
) = Qγ − 1,
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and so

(2.18) u > Qγ − aj∗ − 1.

By (2.17),
z + aj∗

w + qj∗
> γ,

so we have

(2.19) z > (w + qj∗)γ − aj∗ > Qγ − aj∗ .

Thus, by (2.18) and (2.19), for any 1 ≤ i ≤ v, we obtain

(2.20) ari > Qγ−aj∗−1−kiaj∗ = Qγ−(ki+1)γqj∗−1 > Qγ−(ki+1)γT ′D−1.

We also need an upper bound for ari . Since

aj∗

qj∗
−

u

v
=

1

vqj∗
,

we have

u = v(γ −
1

vqj∗
) = vγ −

1

qj∗
< Qγ,

and
z

w
−

aj∗

qj∗
=

1

wqj∗
,

so,

z = w(γ +
1

wqj∗
) = wγ +

1

qj∗
< Qγ + 1.

Thus, for any 1 ≤ i ≤ v,

(2.21) ari < Qγ + 1.

In Case I, by condition 1), we have

M
∑

i=1

Ai 6=

N
∑

j=1

Bj .

If
∑M

i=1 Ai <
∑N

j=1 Bj , by (2.16), and the second inequality in Case I, we
obtain

(

M
∑

i=1

Ai

)

Q >
M
∑

i=1

Aiqri ≥
N
∑

j=1

Bjqsj + 1 >
N
∑

j=1

Bj(Q− (kj + 1)T ′D)

≥

(

1 +

M
∑

i=1

Ai

)

Q− T ′D2
N
∑

j=1

(kj + 1).

Therefore

(2.22)
N
∑

j=1

(kj + 1) >
Q

T ′D2
.
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If
∑M

i=1 Ai >
∑N

j=1 Bj , we use the first inequality in Case I, and by (2.20)

and (2.21), we have

N
∑

j=1

Bj(Qγ + 1) >

N
∑

j=1

Bjasj ≥

M
∑

i=1

Aiari + 1

>

M
∑

i=1

Ai(Qγ − (ki + 1)γT ′D − 1)

> Qγ

(

M
∑

i=1

Ai

)

− γT ′D2
M
∑

i=1

(ki + 1)−

M
∑

i=1

Ai

≥ Qγ



1 +

N
∑

j=1

Bj



− γT ′D2
M
∑

i=1

(ki + 1)−

M
∑

i=1

Ai.

Then,

T ′D2
M
∑

i=1

(ki + 1) +
1

γ





M
∑

i=1

Ai +

N
∑

j=1

Bj



 > Q.

Since γ =
aj∗

qj∗
> 1

T ′D
, 1

γ
< T ′D, we have

(2.23)
1

γ





M
∑

i=1

Ai +

N
∑

j=1

Bj



 < T ′D2(M +N) = T ′D2v.

It follows that

(2.24)

M
∑

i=1

(ki + 1) + v >
Q

T ′D2
.

For Case II, in the above calculations, we only need to change the positions
of ari and qri , and change the positions of asj and qsj .

If
∑M

i=1 Ai <
∑N

j=1 Bj , by (2.20), (2.21), and the first inequality in Case

II, we obtain

(2.25)

N
∑

j=1

(kj + 1) + v >
Q

T ′D2
.

If
∑M

i=1 Ai >
∑N

j=1 Bj , by (2.16), and the second inequality in Case II, we
have

(2.26)

M
∑

i=1

(ki + 1) >
Q

T ′D2
.

By the definitions of ki and kj , we can see that

s− r ≥ max{ki, kj : 1 ≤ i ≤ M, 1 ≤ j ≤ N}+ 1.
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Hence, combining (2.22), (2.24), (2.25), and (2.26), we obtain

s− r >
Q

vT ′D2
− 1,

and since s− r is an integer, one has

(2.27) s− r ≥

[

Q

vT ′D2

]

, if
aj∗

qj∗
/∈

{

ari
qri

: 1 ≤ i ≤ v

}

.

2.3.2. Case 2). Next, we consider the case
aj∗

qj∗
∈
{

ari

qri
: 1 ≤ i ≤ v

}

which can

be divided into two subcases:

aj∗

qj∗
∈

{

ari
qri

: 1 ≤ i ≤ M

}

or
aj∗

qj∗
∈

{

asj
qsj

: 1 ≤ j ≤ N

}

.

Let j′ be the index of the coefficient associated to aj∗ and qj∗ .

1)
aj∗

qj∗
∈
{

ari

qri
: 1 ≤ i ≤ M

}

. By condition 2), we may assume that
∑

i6=j′ Ai

6=
∑N

j=1 Bj .

In Case I, if
∑

i6=j′ Ai <
∑N

j=1 Bj , we use the second inequality in Case I,

and (2.16), to obtain




∑

i6=j′

Ai



Q+ T ′D2 >
∑

i6=j′

Aiqri +Aj′qj∗ ≥

N
∑

j=1

Bjqsj + 1

>
N
∑

j=1

Bj(Q − (kj + 1)T ′D)

≥





∑

i6=j′

Ai + 1



− T ′D2
N
∑

j=1

(kj + 1).

So, we have

(2.28)

N
∑

j=1

(kj + 1) + 1 >
Q

T ′D2
.

If
∑

i6=j′ Ai >
∑N

j=1 Bj, we use the first inequality in Case I, together with

(2.20) and (2.21), to derive

N
∑

j=1

Bj(Qγ + 1) ≥

M
∑

i=1

Aiari + 1 >
∑

i6=j′

Aiari

>
∑

i6=j′

Ai(Qγ − (ki + 1)T ′Dγ − 1)

≥





N
∑

j=1

Bj + 1



Qγ − T ′Dγ
∑

i6=j′

Ai(ki + 1)−
∑

i6=j′

Ai
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≥





N
∑

j=1

Bj + 1



Qγ − T ′D2γ
∑

i6=j′

(ki + 1)−
∑

i6=j′

Ai.

Therefore

T ′D2
∑

i6=j′

(ki + 1) +
1

γ





∑

i6=j′

Ai +

N
∑

j=1

Bj



 > Q.

Similarly to (2.23), we have

1

γ





∑

i6=j′

Ai +

N
∑

j=1

Bj



 < T ′D2(v − 1).

Thus,

(2.29)
∑

i6=j′

(ki + 1) + v − 1 >
Q

T ′D2
.

In Case II, similar to Case I, if
∑

i6=j′ Ai <
∑N

j=1 Bj , we use the first

inequality in Case II, and (2.20) and (2.21), to derive

(2.30)

N
∑

j=1

(kj + 1) + v >
Q

T ′D2
.

If
∑

i6=j′ Ai >
∑N

j=1 Bj , we use the second inequality in Case II, and (2.16),
to obtain

(2.31)
∑

i6=j′

(ki + 1) >
Q

T ′D2
.

2)
aj∗

qj∗
∈
{

asj

qsj
: 1 ≤ j ≤ N

}

. Because of symmetry, one can get results

similar to the above in this case as well.
In Case I, if

∑M

i=1 Ai <
∑N

j 6=j′ Bj , we have

(2.32)
∑

j 6=j′

(kj + 1) >
Q

T ′D2
.

If
∑M

i=1 Ai >
∑N

j 6=j′ Bj , then

(2.33)
M
∑

i=1

(ki + 1) + v >
Q

T ′D2
.

In Case II, if
∑M

i=1 Ai <
∑N

j 6=j′ Bj , one has

(2.34)
∑

j 6=j′

(kj + 1) + v − 1 >
Q

T ′D2
.
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If
∑M

i=1 Ai >
∑N

j 6=j′ Bj , then

(2.35)
M
∑

i=1

(ki + 1) + 1 >
Q

T ′D2
.

Similar to (2.27), combining (2.28-2.35), we find that

(2.36) s− r ≥

[

Q

vT ′D2

]

, if
aj∗

qj∗
∈

{

ari
qri

: 1 ≤ i ≤ v

}

.

Thus, for t = 1 and qj∗ < T ′D, by (2.15), (2.27), and (2.36), we get,

(2.37) s− r ≥

[

Q

vT ′D2

]

.

Therefore, by (2.9), (2.11), (2.12), and (2.37), there exists a constant C =
C(v), such that

s− r >
Q

CD2
.

We now provide an admissible choice for the constant C(v) in our theorem.
Take T = 16, and T ′ = 4v. In case t = 0, by (2.9), we get

s− r >
Q

32vD
.

In case t ≥ 2, by (2.11), we get

s− r >
Q

64vD
.

In case t = 1, and qj∗ ≥ T ′D, by (2.12), we obtain

s− r >
Q

D

(

1

32v
−

1

60v

)

>
Q

69vD
.

In case t = 1, and qj∗ < T ′D, by (2.37), we get

s− r ≥

[

Q

4v2D2

]

.

Hence, one can take C = C(v) = 69v2.
This completes the proof of the theorem.

3. Examples

In this section we provide counterexamples in some cases when one does not
assume the conditions on coefficients from the statement of the theorem. First,
we assume that

v
∑

i=1

Ai = 0, i.e.,
M
∑

i=1

Ai =
N
∑

j=1

Bj .
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Consider the neighbors of 1
2 . If Q is even, let Q = 2K, then the neighbors of 1

2
are

. . . ,
K − 2

2K − 3
,

K − 1

2K − 1
,
1

2
,

K

2K − 1
,

K − 1

2K − 3
, . . .

Let γ0 = 1
2 , and let γ−i (i > 0) be the i-th fraction to the left of 1

2 , and γi be

the i-th fraction to the right of 1
2 .

Then, we have the following examples.

Example 1. Let v = 3 and D = 2. Denote as usual x = (x1, x2, x3), and
consider the linear form

L(x) = x1 + x2 − 2x3.

Take the fractions γ−2, γ−1, and γ2,

γ−2 =
K − 2

2K − 3
, γ−1 =

K − 1

2K − 1
, γ2 =

K − 1

2K − 3
.

Then,

L(a) = (K − 2) + (K − 1)− 2(K − 1) = −1,

and

L(q) = (2K − 3) + (2K − 1)− 2(2K − 3) = 2.

So, for any even Q, we always have

L(a)L(q) < 0.

But, here s− r = 4. Thus, there does not exist a constant C such that, for any
Q and any three fractions satisfying s− r ≤ Q

CD2 , we have

L(a)L(q) ≥ 0.

Actually, for any two positive integers m and n satisfying m + n ≤ D, one
may consider the linear form

L(x) = mx1 + nx2 − (m+ n)x3.

Then taking the same three fractions γ−2, γ−1, and γ2, as above, one sees that

L(a) = m(K − 2) + n(K − 1)− (m+ n)(K − 1) = −m,

and

L(q) = m(2K − 3) + n(2K − 1)− (m+ n)(2K − 3) = 2n.

Thus, we always have

L(a)L(q) < 0.

Example 2. Let v = 4, D = 4, and consider the linear form

L(x) = x1 + x2 + 2x3 − 4x4.

Take the fractions

γ−3 =
K − 3

2K − 5
, γ−2 =

K − 2

2K − 3
, γ−1 =

K − 1

2K − 1
, γ2 =

K − 1

2K − 3
.
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Here s− r = 5. But,

L(a) = (K − 3) + (K − 2) + 2(K − 1)− 4(K − 1) = −3,

and
L(q) = (2K − 5) + (2K − 3) + 2(2K − 1)− 4(2K − 3) = 2.

Thus, L(a)L(q) < 0. Hence, there is no constant C such that, for any four

fractions, if s− r ≤ Q
CD2 , we have

L(a)L(q) ≥ 0.

Example 3. Let v = 5, D = 2, and consider the linear form

L(x) = x1 + x2 + 2x3 − 2x4 − 2x5.

Let us choose the fractions

γ−3 =
K − 3

2K − 5
, γ−2 =

K − 2

2K − 3
, γ−1 =

K − 1

2K − 1
, γ2 =

K − 1

2K − 3
, γ3 =

K − 2

2K − 5
.

Then,

L(a) = (K − 3) + (K − 2) + 2(K − 1)− 2(K − 1)− 2(K − 2) = −1,

and

L(q) = (2K − 5) + (2K − 3) + 2(2K − 1)− 2(2K − 3)− 2(2K − 5) = 6.

Thus, for any even Q, L(a)L(q) < 0. Here s− r = 6.

Example 4. Let v = 6, D = 3, and consider the linear form

L(x) = x1 + 2x2 + 3x3 − 2x4 − x5 − 3x6.

Take the fractions

γ−3 =
K − 3

2K − 5
, γ−2 =

K − 2

2K − 3
, γ−1 =

K − 1

2K − 1
,

γ1 =
K

2K − 1
, γ2 =

K − 1

2K − 3
, γ3 =

K − 2

2K − 5
.

Then,

L(a) = (K − 3) + 2(K − 2) + 3(K − 1)− 2K − (K − 1)− 3(K − 2) = −3,

and

L(q) = (2K−5)+2(2K−3)+3(2K−1)−2(2K−1)−(2K−3)−3(2K−5) = 6.

Thus, for any even Q, L(a)L(q) < 0. Here s− r = 6.

Note. If Q is odd, Q = 2K + 1 say, then the neighbors of 1
2 are

. . . ,
K − 1

2K − 1
,

K

2K + 1
,
1

2
,

K + 1

2K + 1
,

K

2K − 1
, . . .

Then, the above linear forms also provide counterexamples in this case. We
remark that one can also construct counterexamples using the neighbors of 1

3 .
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