참고문헌
- Abecassis I, Olofsson B, Schmid M, et al (2003). RhoA induces MMP-9 expression at CD44 lamellipodial focal complexes and promotes HMEC-1 cell invasion. Exp Cell Res, 291, 363-76. https://doi.org/10.1016/j.yexcr.2003.08.006
- Barsky A, Gardy JL, Hancock RE, et al (2007). Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics, 23, 1040-2. https://doi.org/10.1093/bioinformatics/btm057
- Chakraborty S, Kaur S, Guha S, et al (2012). The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim Biophys Acta, 1826, 129-69.
- Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, et al (2013). The BioGRID interaction database: 2013 update. Nucleic Acids Res, 41, 816-23. https://doi.org/10.1093/nar/gks1158
- Csardi G, Nepusz T (2006). The igraph software package for complex network research. InterJournal Complex Systems, 5, 1695.
- Dijkstra E (1959). A note on two problems in connection with graphs. Numerische Mathematik, 1, 269-71. https://doi.org/10.1007/BF01386390
- Du ZP, Lv Z, Wu BL, et al (2011.) Neutrophil gelatinaseassociated lipocalin and its receptor: independent prognostic factors of oesophageal squamous cell carcinoma. J Clin Pathol, 64, 69-74. https://doi.org/10.1136/jcp.2010.083907
- Flower DR (1996). The lipocalin protein family: structure and function. Biochem J, 318, 1-14.
- Friedman A, Perrimon N (2007). Genetic screening for signal transduction in the era of network biology. Cell, 128, 225-31. https://doi.org/10.1016/j.cell.2007.01.007
- Goel R, Muthusamy B, Pandey A, et al (2011). Human protein reference database and human proteinpedia as discovery resources for molecular biotechnology. Mol Biotechnol, 48, 87-95. https://doi.org/10.1007/s12033-010-9336-8
- Hayden MS, Ghosh S (2008). Shared principles in NF-kappaB signaling. Cell, 132, 344-62. https://doi.org/10.1016/j.cell.2008.01.020
- Hu L, Hittelman W, Lu T, et al (2009). NGAL decreases E-cadherin mediated cell-cell adhesion and increases cell motility and invasion through Rac1 in colon carcinoma cells. Lab I nvest, 89, 531-48.
- Huang da W, Sherman BT, Lempicki RA (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 37, 1-13. https://doi.org/10.1093/nar/gkn923
- Jiang C, Xuan Z, Zhao F, et al (2007). TRED: a transcriptional regulatory element database, new entries and other development. Nucleic Acids Res, 35, 137-40.
- Kerrien S, Aranda B, Breuza L, et al (2012). The IntAct molecular interaction database in 2012. Nucleic Acids Res, 40, 841-6. https://doi.org/10.1093/nar/gkr1088
- Kumar G, Ranganathan S (2010). Network analysis of human protein location. BMC Bioinformatics, 11 Suppl 7, S9.
- Matys V, Fricke E, Geffers R, et al (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res, 31, 374-8. https://doi.org/10.1093/nar/gkg108
- Pan XH (2012). Pathway crosstalk analysis based on proteinprotein network analysis in ovarian cancer. Asian Pac J Cancer Prev, 13, 3905-9. https://doi.org/10.7314/APJCP.2012.13.8.3905
- Petrella BL, Armstrong DA, Vincenti MP (2011). CCAATenhancer- binding protein beta activation of MMP-1 gene expression in SW1353 cells: independent roles of extracellular signal-regulated and p90/ribosomal S6 kinases. J Cell Physiol, 226, 3349-54. https://doi.org/10.1002/jcp.22693
- Rees JR, Onwuegbusi BA, Save VE, et al (2006). In vivo and in vitro evidence for transforming growth factor-beta1- mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res, 66, 9583-90. https://doi.org/10.1158/0008-5472.CAN-06-1842
- Smoot ME, Ono K, Ruscheinski J, et al (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-2. https://doi.org/10.1093/bioinformatics/btq675
- Tong Z, Kunnumakkara AB, Wang H, et al (2008). Neutrophil gelatinase-associated lipocalin: a novel suppress or of invasion and angiogenesis in pancreatic cancer. Cancer Res, 68, 6100-8. https://doi.org/10.1158/0008-5472.CAN-08-0540
-
Wang F, He W, Fanghui P, et al (2013).
$NF-{\kappa}BP65$ promotes invasion and metastasis of oesophageal squamous cell cancer by regulating matrix metalloproteinase-9 and epithelial-tomesenchymal transition. Cell Biol Int, 37, 780-8. https://doi.org/10.1002/cbin.10089 - Wu J, Vallenius T, Ovaska K, et al (2009). Integrated network analysis platform for protein-protein interactions. Nat Methods, 6, 75-7. https://doi.org/10.1038/nmeth.1282
- Yan L, Borregaard N, Kjeldsen L, et al (2001). The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem, 276, 37258-65. https://doi.org/10.1074/jbc.M106089200
- Yang J, Goetz D, Li JY, et al (2002). An iron delivery pathway mediated by a lipocalin. Mol Cell, 10, 1045-56. https://doi.org/10.1016/S1097-2765(02)00710-4
- Zhang H, Xu L, Xiao D, et al (2007) Up regulation of neutrophil gelatinase associated lipocalin in oesophageal squamous cell carcinoma: significant correlation with cell differentiation and tumour invasion. J Clin Pathol, 60, 555-61.
- Zhu XL, Ai ZH, Wang J, et al (2012). Weighted gene coexpression network analysis in identification of endometrial cancer prognosis markers. Asian Pac J Cancer Prev, 13, 4607-11. https://doi.org/10.7314/APJCP.2012.13.9.4607