DOI QR코드

DOI QR Code

Functional Roles of Long Non-coding RNA in Human Breast Cancer

  • Ye, Ni (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wang, Bin (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Quan, Zi-Fang (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Cao, San-Jie (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wen, Xin-Tian (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Huang, Yong (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Huang, Xiao-Bo (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wu, Rui (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Ma, Xiao-Ping (College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Yan, Qi-Gui (College of Veterinary Medicine, Sichuan Agricultural University)
  • Published : 2014.08.15

Abstract

The discovery of long noncoding RNA (LncRNA) changes our view of transcriptional and posttranscriptional regulation of gene expression. With application of new research techniques such as high-throughput sequencing, the biological functions of LncRNAs are gradually becoming to be understood. Multiple studies have shown that LncRNAs serve as carcinogenic factors or tumor suppressors in breast cancer with abnormal expression, prompts the question of whether they have potential value in predicting the stages and survival rate of breast cancer patients, and also as therapeutic targets. Focusing on the latest research data, this review mainly summarizes the tumorigenic mechanisms of certain LncRNAs in breast cancer, in order to provide a theoretical basis for finding safer, more effective treatment of breast cancer at the LncRNA molecular level.

Keywords

References

  1. Balasubramanian S, Eckert RL (2007). Keratinocyte proliferation, differentiation, and apoptosis-differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicol Appl Pharmacol, 224, 214-9. https://doi.org/10.1016/j.taap.2007.03.020
  2. Barsyte-Lovejoy D, Lau SK, Boutros PC, et al (2006). The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res, 66, 5330-7. https://doi.org/10.1158/0008-5472.CAN-06-0037
  3. Berteaux N, Lottin S, Monte D, et al (2005). H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J Biol Chem, 280, 29625-36. https://doi.org/10.1074/jbc.M504033200
  4. Burk U, Schubert J, Wellner U, et al (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9, 582-9. https://doi.org/10.1038/embor.2008.74
  5. Cesana M, Cacchiarelli D, Legnini I, et al (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358-69. https://doi.org/10.1016/j.cell.2011.09.028
  6. Chen L-L, Carmichael GG (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: Functional role of a nuclear noncoding RNA. Mol Cell, 35, 467-78. https://doi.org/10.1016/j.molcel.2009.06.027
  7. Chen L-L, Carmichael GG (2010). Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol, 22, 357-64. https://doi.org/10.1016/j.ceb.2010.03.003
  8. Chen W, Bocker W, Brosius J, et al (1997). Expression of neural BC200 RNA in human tumours. J Pathol, 183, 345-51. https://doi.org/10.1002/(SICI)1096-9896(199711)183:3<345::AID-PATH930>3.0.CO;2-8
  9. Clemson CM, Hutchinson JN, Sara SA, et al (2009). An Architectural Role for a Nuclear Noncoding RNA: NEAT1 RNA Is Essential for the Structure of Paraspeckles. Mol cell, 33, 717-26. https://doi.org/10.1016/j.molcel.2009.01.026
  10. Clemson CM, McNeil JA, Willard HF, et al (1996). XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol, 132, 259-75. https://doi.org/10.1083/jcb.132.3.259
  11. Coccia EM, Cicala C, Charlesworth A, et al (1992). Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation and development. Mol Cell Biol, 12, 3514-21.
  12. Fejes-Toth K, Sotirova V, Sachidanandam R, et al (2009). Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature, 457, 1028-32. https://doi.org/10.1038/nature07759
  13. Fellig Y, Ariel I, Ohana P, et al (2005). H19 expression in hepatic metastases from a range of human carcinomas. J Clin Pathol, 58, 1064-8. https://doi.org/10.1136/jcp.2004.023648
  14. Flynn RA , Chang HY (2012). Active chromatin and noncoding RNAs: an intimate relationship. Curr Opin Gene Dev, 22, 172-8. https://doi.org/10.1016/j.gde.2011.11.002
  15. Fox AH, Bond CS, Lamond AI (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell, 16, 5304-15. https://doi.org/10.1091/mbc.E05-06-0587
  16. Gabory A, Jammes H, Dandolo L (2010). The H19 locus: Role of an imprinted non-coding RNA in growth and development. Bioessays, 32, 473-80. https://doi.org/10.1002/bies.200900170
  17. Giannoukakis N, Deal C, Paquette J, et al (1993). Parental genomic imprinting of the human IGF2 gene. Nat Genet, 4, 98-101. https://doi.org/10.1038/ng0593-98
  18. Gupta RA, Shah N, Wang KC, et al (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464, 1071-6. https://doi.org/10.1038/nature08975
  19. Hassan S, Buchanan M, Jahan K, et al (2011). CXCR4 peptide antagonist inhibits primary breast tumor growth, metastasis and enhances the efficacy of anti-VEGF treatment or docetaxel in a transgenic mouse model. Int J Cancer, 129, 225-32. https://doi.org/10.1002/ijc.25665
  20. Hibi K, Nakamura H, Hirai A, et al (1996). Loss of H19 imprinting in esophageal cancer. Cancer Res, 56, 480-2.
  21. Hu Q, Chen WX, Zhong SL, et al (2013). Current progress in the treatment of metaplastic breast carcinoma. Asian Pac J Cancer P, 14, 6221-5. https://doi.org/10.7314/APJCP.2013.14.11.6221
  22. Hung T, Wang Y, Lin MF, et al (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 43, 621-9. https://doi.org/10.1038/ng.848
  23. Hutvagner G, Zamore PD (2002). A microRNA in a multipleturnover RNAi enzyme complex. Science, 297, 2056-60. https://doi.org/10.1126/science.1073827
  24. Kino T, Hurt DE, Ichijo T, et al (2010). Noncoding RNA gas5 is a growth arrest-and starvation-associated repressor of the glucocorticoid receptor. Sci Signal, 3, ra8.
  25. Lai EC (2002). MicroRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet, 30, 363.2. https://doi.org/10.1038/ng865
  26. Lottin S, Adriaenssens E, Dupressoir T, et al (2002). Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis, 23, 1885-95. https://doi.org/10.1093/carcin/23.11.1885
  27. Lv J, Yu YQ, Li SQ, et al (2014). Aflatoxin B1 promotes cell growth and invasion in hepatocellular carcinoma HepG2 cells through H19 and E2F1. Asian Pac J Cancer Prev, 15, 2565-70. https://doi.org/10.7314/APJCP.2014.15.6.2565
  28. Matouk IJ, DeGroot N, Mezan S, et al (2007). The H19 noncoding RNA is essential for human tumor growth. PLoS One, 2, e845. https://doi.org/10.1371/journal.pone.0000845
  29. Mourtada-Maarabouni M, Pickard M, Hedge V, et al (2009). GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28, 195-208. https://doi.org/10.1038/onc.2008.373
  30. Olson P, Lu J, Zhang H, et al (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Gene Dev, 23, 2152-65. https://doi.org/10.1101/gad.1820109
  31. Pei CH, Wu HY, Fan FT, et al (2014). Influence of curcumin on HOTAIR-mediated migration of human renal cell carcinoma cell. Asian Pac J Cancer Prev, 15, 4239-43. https://doi.org/10.7314/APJCP.2014.15.10.4239
  32. Ponting CP, Belgard TG (2010). Transcribed dark matter: meaning or myth? Hum Mol Genet, 19, R162-8. https://doi.org/10.1093/hmg/ddq362
  33. Qiao HP, Gao WH, Huo JX, et al (2013). Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev, 14, 1077-82. https://doi.org/10.7314/APJCP.2013.14.2.1077
  34. Rinn JL, Kertesz M, Wang JK, et al (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129, 1311-23. https://doi.org/10.1016/j.cell.2007.05.022
  35. Sasaki Y, Hiro se T, et al (2009), How to build a paraspeckle. Genome Biol, 10, 227. https://doi.org/10.1186/gb-2009-10-7-227
  36. Schneider C, King RM, Philipson L et al (1988). Genes specifically expressed at growth arrest of mammalian cells. Cell, 54, 787-93. https://doi.org/10.1016/S0092-8674(88)91065-3
  37. Silva JM, Boczek NJ, Berres MW et al(2011).LSINCT 5 is overexpressed in breast and ovarian cancer and affects cellular proliferation. Rna Bilo, 8, 496-505. https://doi.org/10.4161/rna.8.3.14800
  38. Smaldone MC, Davies BJ, et al (2010). BC-819 a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther, 12, 607-16.
  39. Sunwoo H, Dinger ME, Wilusz JE, et al (2009). MEN $\varepsilon$/$\beta$ nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19, 347-59.
  40. Swanton C, Caldas C (2009). Molecular classification of solid tumours: towards pathway-driven therapeutics. Brit J Cancer, 100, 1517-22. https://doi.org/10.1038/sj.bjc.6605031
  41. Szymanski M, Barciszewski J (2006). RNA regulation in mammals. Ann NY Acad Sci, 1067, 461-8. https://doi.org/10.1196/annals.1354.066
  42. Tsai M-C, Manor O, Wan Y, et al (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329, 689-93. https://doi.org/10.1126/science.1192002
  43. Tsai M-C, Spitale RC, Chang HY (2011). Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res, 71, 3-7.
  44. Tsang WP, Ng EK, Ng SS, et al (2010). Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis, 31, 350-8. https://doi.org/10.1093/carcin/bgp181
  45. Wan Yue, Howar Y (2010). Flight of noncoding RNAs in cancer metastasis. Cell Cycle, 9, 3391-2. https://doi.org/10.4161/cc.9.17.13122
  46. Wang J, Liu X, Wu H, et al (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res, 38, 5366-83. https://doi.org/10.1093/nar/gkq285
  47. Wang KC, Chang HY (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43, 904-14. https://doi.org/10.1016/j.molcel.2011.08.018
  48. Wapinski O, Chang HY (2011). Long noncoding RNAs and human disease. Trends Cell Biol, 21, 354-61. https://doi.org/10.1016/j.tcb.2011.04.001
  49. Wilusz JE, Sunwoo H, Spector DL (2009). Long noncoding RNAs: functional surprises from the RNA world. Gene Dev, 23, 1494-504. https://doi.org/10.1101/gad.1800909
  50. Yang tao, Li jun tang, Wang li juan, et al (2012). The influence of interference IncRNAs HOTAIR in human breast cancer cells MDA-MB-231. Chin J Cell Mol Immunol, 28, 97-8.
  51. Yan L-X, Huang X-F, Shao Q, et al (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14, 2348-60. https://doi.org/10.1261/rna.1034808
  52. Zemel S, Bartolomei MS, Tilghman SM (1992). Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2. Nat Genet, 2, 61-5. https://doi.org/10.1038/ng0992-61
  53. Zeng Y, Yi R, Cullen BR (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA, 100, 9779-84. https://doi.org/10.1073/pnas.1630797100
  54. Zhang Y, Tycko B (1992). Monoallelic expression of the human H19 gene. Nat Genet, 1, 40-44. https://doi.org/10.1038/ng0492-40

Cited by

  1. Dysregulated Expression of Long Noncoding RNAs in Ovarian Cancer vol.26, pp.9, 2016, https://doi.org/10.1097/IGC.0000000000000828
  2. A brief review on long noncoding RNAs: a new paradigm in breast cancer pathogenesis, diagnosis and therapy vol.37, pp.2, 2016, https://doi.org/10.1007/s13277-015-4572-y
  3. LncRNAs: key players and novel insights into cervical cancer vol.37, pp.3, 2016, https://doi.org/10.1007/s13277-015-4663-9
  4. Long Non-Coding RNA CCAT1 Acts as a Competing Endogenous RNA to Regulate Cell Growth and Differentiation in Acute Myeloid Leukemia vol.39, pp.4, 2016, https://doi.org/10.14348/molcells.2016.2308
  5. Multiple Functions of Long Non-Coding RNAs in Oxidative Stress, DNA Damage Response and Cancer Progression vol.119, pp.1, 2017, https://doi.org/10.1002/jcb.26217
  6. in HER2-positive breast cancer cells vol.39, pp.6, 2017, https://doi.org/10.1177/1010428317707374
  7. Emerging ways to treat breast cancer: will promises be met? pp.2211-3436, 2018, https://doi.org/10.1007/s13402-018-0409-1
  8. Microarray expression profiling and co-expression network analysis of circulating LncRNAs and mRNAs associated with neurotoxicity induced by BPA vol.25, pp.15, 2018, https://doi.org/10.1007/s11356-018-1678-y
  9. Long noncoding RNA Linc00339 promotes triple-negative breast cancer progression through miR-377-3p/HOXC6 signaling pathway pp.00219541, 2019, https://doi.org/10.1002/jcp.28007
  10. Down-regulated lncRNA SLC25A5-AS1 facilitates cell growth and inhibits apoptosis via miR-19a-3p/PTEN/PI3K/AKT signalling pathway in gastric cancer pp.15821838, 2019, https://doi.org/10.1111/jcmm.14200