DOI QR코드

DOI QR Code

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young (Department of Food & Nutrition Education, Graduate School of Education, Soonchunhyang University) ;
  • Mun, Seong Taek (Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital)
  • Received : 2014.02.12
  • Accepted : 2014.06.05
  • Published : 2014.10.01

Abstract

BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

Keywords

References

  1. Himes RW, Smith CW. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 2010;24:731-9. https://doi.org/10.1096/fj.09-141929
  2. Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA, Saad MJ. Loss-of-function mutation in Toll-like receptor 4 prevents dietinduced obesity and insulin resistance. Diabetes 2007;56:1986-98. https://doi.org/10.2337/db06-1595
  3. Kim SJ, Choi Y, Choi YH, Park T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J Nutr Biochem 2012;23:113-22. https://doi.org/10.1016/j.jnutbio.2010.10.012
  4. Kopp A, Buechler C, Neumeier M, Weigert J, Aslanidis C, Scholmerich J, Schaffler A. Innate immunity and adipocyte function: ligandspecific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity (Silver Spring) 2009;17:648-56. https://doi.org/10.1038/oby.2008.607
  5. Schaeffler A, Gross P, Buettner R, Bollheimer C, Buechler C, Neumeier M, Kopp A, Schoelmerich J, Falk W. Fatty acid-induced induction of Toll-like receptor-4/nuclear factor-kappaB pathway in adipocytes links nutritional signalling with innate immunity. Immunology 2009;126:233-45. https://doi.org/10.1111/j.1365-2567.2008.02892.x
  6. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-72. https://doi.org/10.2337/db06-1491
  7. Ibarra A, Cases J, Roller M, Chiralt-Boix A, Coussaert A, Ripoll C. Carnosic acid-rich rosemary (Rosmarinus officinalis L.) leaf extract limits weight gain and improves cholesterol levels and glycaemia in mice on a high-fat diet. Br J Nutr 2011;106:1182-9. https://doi.org/10.1017/S0007114511001620
  8. Wang T, Takikawa Y, Satoh T, Yoshioka Y, Kosaka K, Tatemichi Y, Suzuki K. Carnosic acid prevents obesity and hepatic steatosis in ob/ob mice. Hepatol Res 2011;41:87-92. https://doi.org/10.1111/j.1872-034X.2010.00747.x
  9. Xiang Q, Liu Z, Wang Y, Xiao H, Wu W, Xiao C, Liu X. Carnosic acid attenuates lipopolysaccharide-induced liver injury in rats via fortifying cellular antioxidant defense system. Food Chem Toxicol 2013;53:1-9. https://doi.org/10.1016/j.fct.2012.11.001
  10. Gaya M, Repetto V, Toneatto J, Anesini C, Piwien-Pilipuk G, Moreno S. Antiadipogenic effect of carnosic acid, a natural compound present in Rosmarinus officinalis, is exerted through the C/EBPs and PPAR${\gamma}$ pathways at the onset of the differentiation program. Biochim Biophys Acta 2013;1830:3796-806. https://doi.org/10.1016/j.bbagen.2013.03.021
  11. Tsai CW, Liu KL, Lin YR, Kuo WC. The mechanisms of carnosic acid attenuates tumor necrosis factor-${\alpha}$-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. Mol Nutr Food Res 2014;58: 654-64. https://doi.org/10.1002/mnfr.201300356
  12. Nagasaki H, Yoshimura T, Aoki N. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element. Biochem Biophys Res Commun 2012;420:623-7. https://doi.org/10.1016/j.bbrc.2012.03.049
  13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  14. Park M, Han J, Lee CS, Soo BH, Lim KM, Ha H. Carnosic acid, a phenolic diterpene from rosemary, prevents UV-induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes. Exp Dermatol 2013;22:336-41. https://doi.org/10.1111/exd.12138
  15. Meng P, Yoshida H, Matsumiya T, Imaizumi T, Tanji K, Xing F, Hayakari R, Dempoya J, Tatsuta T, Aizawa-Yashiro T, Mimura J, Kosaka K, Itoh K, Satoh K. Carnosic acid suppresses the production of amyloid-${\beta}$ 1-42 by inducing the metalloprotease gene TACE/ ADAM17 in SH-SY5Y human neuroblastoma cells. Neurosci Res 2013;75:94-102. https://doi.org/10.1016/j.neures.2012.11.007
  16. O'Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007;7: 353-64. https://doi.org/10.1038/nri2079
  17. Sun W, Yang J. Molecular basis of lysophosphatidic acid-induced NF-${\kappa}$B activation. Cell Signal 2010;22:1799-803. https://doi.org/10.1016/j.cellsig.2010.05.007
  18. Fresno M, Alvarez R, Cuesta N. Toll-like receptors, inflammation, metabolism and obesity. Arch Physiol Biochem 2011;117:151-64. https://doi.org/10.3109/13813455.2011.562514
  19. Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007;132:2169-80. https://doi.org/10.1053/j.gastro.2007.03.059
  20. Anderson PD, Mehta NN, Wolfe ML, Hinkle CC, Pruscino L, Comiskey LL, Tabita-Martinez J, Sellers KF, Rickels MR, Ahima RS, Reilly MP. Innate immunity modulates adipokines in humans. J Clin Endocrinol Metab 2007;92:2272-9. https://doi.org/10.1210/jc.2006-2545
  21. Starr ME, Evers BM, Saito H. Age-associated increase in cytokine production during systemic inflammation: adipose tissue as a major source of IL-6. J Gerontol A Biol Sci Med Sci 2009;64:723-30.
  22. Tsai TH, Chuang LT, Lien TJ, Liing YR, Chen WY, Tsai PJ. Rosmarinus officinalis extract suppresses Propionibacterium acnes-induced inflammatory responses. J Med Food 2013;16:324-33. https://doi.org/10.1089/jmf.2012.2577
  23. Oh J, Yu T, Choi SJ, Yang Y, Baek HS, An SA, Kwon LK, Kim J, Rho HS, Shin SS, Choi WS, Hong S, Cho JY. Syk/Src pathway-targeted inhibition of skin inflammatory responses by carnosic acid. Mediators Inflamm 2012;2012:781375.
  24. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298:1911-2. https://doi.org/10.1126/science.1072682
  25. Kopp A, Buechler C, Bala M, Neumeier M, Scholmerich J, Schaffler A. Toll-like receptor ligands cause proinflammatory and prodiabetic activation of adipocytes via phosphorylation of extracellular signalregulated kinase and c-Jun N-terminal kinase but not interferon regulatory factor-3. Endocrinology 2010;151:1097-108. https://doi.org/10.1210/en.2009-1140
  26. Barbarroja N, Lopez-Pedrera R, Mayas MD, Garcia-Fuentes E, Garrido- Sanchez L, Macias-Gonzalez M, El Bekay R, Vidal-Puig A, Tinahones FJ. The obese healthy paradox: is inflammation the answer? Biochem J 2010;430:141-9. https://doi.org/10.1042/BJ20100285
  27. Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M. The protective role of carnosic acid against betaamyloid toxicity in rats. ScientificWorldJournal 2013;2013:917082.
  28. Rezaie T, McKercher SR, Kosaka K, Seki M, Wheeler L, Viswanath V, Chun T, Joshi R, Valencia M, Sasaki S, Tozawa T, Satoh T, Lipton SA. Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2012;53:7847-54. https://doi.org/10.1167/iovs.12-10793

Cited by

  1. TLR4 inhibitor attenuates amyloid-β-induced angiogenic and inflammatory factors in ARPE-19 cells: Implications for age-related macular degeneration vol.13, pp.4, 2016, https://doi.org/10.3892/mmr.2016.4890
  2. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review vol.389, pp.9, 2016, https://doi.org/10.1007/s00210-016-1256-0
  3. Structure, function and disease relevance of Omega-class glutathione transferases vol.90, pp.5, 2016, https://doi.org/10.1007/s00204-016-1691-1
  4. Correlation of TLR4 and KLF7 in Inflammation Induced by Obesity vol.40, pp.1, 2017, https://doi.org/10.1007/s10753-016-0450-z
  5. Rosemary Extract as a Potential Anti-Hyperglycemic Agent: Current Evidence and Future Perspectives vol.9, pp.9, 2017, https://doi.org/10.3390/nu9090968
  6. Molecular mechanisms of the anti-obesity effect of bioactive ingredients in common spices: a review vol.9, pp.9, 2018, https://doi.org/10.1039/C8FO01349G
  7. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00370
  8. L pp.00219541, 2019, https://doi.org/10.1002/jcp.28221
  9. Carnosic Acid Inhibits Lipid Accumulation in 3T3-L1 Adipocytes Through Attenuation of Fatty Acid Desaturation vol.20, pp.1, 2014, https://doi.org/10.15430/jcp.2015.20.1.41
  10. Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway vol.8, pp.37, 2014, https://doi.org/10.18632/oncotarget.18740
  11. Reviewing Hit Discovery Literature for Difficult Targets: Glutathione Transferase Omega-1 as an Example vol.61, pp.17, 2014, https://doi.org/10.1021/acs.jmedchem.8b00318
  12. Herbal medicine in the treatment of patients with type 2 diabetes mellitus vol.132, pp.1, 2019, https://doi.org/10.1097/cm9.0000000000000006
  13. Polysaccharide of Atractylodes macrocephala Koidz Enhances Cytokine Secretion by Stimulating the TLR4-MyD88-NF-κB Signaling Pathway in the Mouse Spleen vol.22, pp.9, 2019, https://doi.org/10.1089/jmf.2018.4393
  14. Tolerability and Safety of a Nutritional Supplement with Potential as Adjuvant in Colorectal Cancer Therapy: A Randomized Trial in Healthy Volunteers vol.11, pp.9, 2014, https://doi.org/10.3390/nu11092001
  15. Antidiabetic Effects and Mechanisms of Rosemary ( Rosmarinus officinalis L.) and its Phenolic Components vol.48, pp.6, 2014, https://doi.org/10.1142/s0192415x20500664
  16. The Rosmarinus Bioactive Compound Carnosic Acid Is a Novel PPAR Antagonist That Inhibits the Browning of White Adipocytes vol.9, pp.11, 2014, https://doi.org/10.3390/cells9112433
  17. The adipokine C1q/TNF-related protein-3 (CTRP-3) inhibits Toll-like receptor (TLR)-induced expression of Cathelicidin antimicrobial peptide (CAMP) in adipocytes vol.148, pp.None, 2014, https://doi.org/10.1016/j.cyto.2021.155663
  18. Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice vol.26, pp.24, 2014, https://doi.org/10.3390/molecules26247589