DOI QR코드

DOI QR Code

Role of Samultang in Formalin-induced Orofacial pain

포르말린으로 유발된 안면부 통증조절에서 사물탕의 역할

  • 김윤경 (동의대학교학교 일반대학원 보건의과학과) ;
  • 현경예 (동의대학교학교 일반대학원 보건의과학과) ;
  • 박민경 (경운대학교 보건대학 치위생학과) ;
  • 이민경 (동의대학교학교 일반대학원 보건의과학과)
  • Received : 2014.05.08
  • Accepted : 2014.09.11
  • Published : 2014.09.30

Abstract

The aim of this study was to evaluate the analgesic effects of Samultang by measuring the anti-inflammatory and antioxidative activities in formalin-induced orofacial pain. The anti-inflammatory and anti-oxidative effects were measured by western blot analysis for p38 MAPK(Mitogen-activated protein kinases), iNOS(induceble nitric oxide synthase) and NOX4(nicotinamide adenine dinucleotide phosphate4) in a rat's brain and medulla oblongata. Samultang significantly attenuated the increased formalin-induced nociceptive response and inhibited the p38 MAPK and iNOS that led to inflammatory pain. In addition, this study indicated that Samultang possess antioxidative effects through the blockade of NOX4. These findings suggest that Samultang plays an important role in the peripheral processing of inflammatory pain in the orofacial area.

본 연구는 fomalin으로 유발한 실험동물의 안면부 통증 모델에서 사물탕의 항염증 작용과 항산화 작용을 확인하고자 수행되었다. Formalin 주입 전 사물탕추출물(3.5 mg/1 ml)을 3일간 복강 투여하였고, 3일차 사물탕 주입 30분 후 5% formalin($50{\mu}{\ell}$)을 실험동물의 오른쪽 수염부 피하에 주입하여 안면부 통증을 유발하였다. 사물탕 투여에 따른 안면부 통증행위반응을 측정하였다. 통증신호를 매개하는 염증과 산화작용의 지표로 실험동물의 뇌와 연수에서 p38 MAPK, iNOS, NOX4의 발현을 단백정량분석법으로 평가하였다. 사물탕은 안면부 통증행위반응을 유의하게 감소시켰을 뿐만 아니라, 염증성 매개 인자인 p38 MAPK, iNOS의 발현을 억제하였고 NOX4의 조절을 통한 항산화작용을 나타내었다. 이러한 결과를 통하여 사물탕의 투여가 안면부 통증 조절에 중요한 역할을 담당할 것으로 생각된다.

Keywords

References

  1. J. H. Kim, J. K. Lee, H. K. Ha, C. S. Seo, H. Y. Lee, D. Y. Jung, N. H. Lee, J. A. Lee, D. S. Huang, H. K. Shin, Analysis of Studies on Samul-tang for Fundamental Estabishment of Evidence Based Medicine. Korea J. Oriental Physiology & Pathology, Vol.23, No.4, pp.779-788, 2009.
  2. H. S. So, J. Oh, Y. T. Chung, Y. J. Moon, D. H. Kim, B. S. Moon, H. S. Lee, S. W. Baek, C. Park, Y. S. Lim, M. S. Kim, R. Park, The water extract of Samultang protects the lipopolysaccharide (LPS)/phorbol 12-myristate 13-acetate (PMA)-induced damage and nitric oxide production of C6 glial cells via down-regulation of NF-kappaB. Gen Pharmacol, Vol.34, No.5, pp.303-10, 2000. DOI: http://dx.doi.org/10.1016/S0306-3623(00)00073-2
  3. E. K. Kim, E. Y. Kim, H. S. Lee, H. S. Jung, S. K. Park, Y. J. Sohn, N. W. Sohn, Effect of Samul-tang on the allergic inflammatory Response. Korea J. Oriental Physiology & Pathology, Vol.21, No.3, pp.617-625, 2007.
  4. M. A. ChoI, M. L. Kim, C. S. Park, The Antibacterial and Antioxidative Activities of Samultang Ingredient Extracts, KOREAN J. FOOD COOKERY SCI, Vol.24, No.1 pp.52-58, 2008.
  5. Y. K. Kim, K. Y. Hyun, M. H. Jo, B. M. Jin, M. K. Lee, Effects of Samultang in Formalin-induced Orofacial Pain. Journal of Korean Society of Oral Health Science, Vol.1, No.1, pp.117-125, 2013. DOI: http://dx.doi.org/10.5668/JEHS.2013.39.2.117
  6. E. Herlaar, Z. Brown, p38 MAPK signalling cascades in inflammatory disease. Mol Med Today, Vol.5, No.10 pp.439-47, 1999. DOI: http://dx.doi.org/10.1016/S1357-4310(99)01544-0
  7. R. R. Ji, M. R. Suter, p38 MAPK microglial signaling and neuropathic pain. Mol Pain, Vol.3, No.33, pp.1-9, 2007. https://doi.org/10.1186/1744-8069-3-1
  8. F. Ma, L. Zhang, D. Lyons, K. N. Westlund, Orofacial neuropathic pain mouse model induced by Trigeminal Inflammatory Compression (TIC) of the infraorbital nerve. Molecular Brain, Vol.5, No.44, 2012.
  9. K. A. Won, Y. M. Kang, M. K. Lee, M. K. Park, J. S. Ju, Y. C. Bae, D. K. Ahn, Participation of microglial p38 MAPK in formalin-induced temporomandibular joint nociception in rats. J Orofac Pain, Vol.26, No.2, pp.132-41, 2012.
  10. A. Fugen, iNOS-mediated nitric oxide production and its regulation. Life Sci, Vol.75, No.6 pp.639-53, 2004. DOI: http://dx.doi.org/10.1016/j.lfs.2003.10.042
  11. M. G. Osborne, T. J. Coderre, Effects of intrathecal administration of nitric oxide synthase inhibitors on carrageenan-induced thermal hyperalgesia. Br J Pharmacol, Vol.126, No.8 pp.1840-6, 1999. DOI: http://dx.doi.org/10.1038/sj.bjp.0702508
  12. A. J. De, N. M. Clayton, S. D. Collins, P. Colthup, I. Chessell, R. G. Knowles, GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain, Vol.120, No.1-2, pp.170-81, 2006. DOI: http://dx.doi.org/10.1016/j.pain.2005.10.028
  13. I. Takac, K. Schroder, L. Zhang, B. Lardy, N. Anilkumar, J. D. Lambeth, A. M. Shah, F. Morel, R. P. Brandes, The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem, Vol.286, No.15, pp.13304-13, 2011. DOI: http://dx.doi.org/10.1074/jbc.M110.192138
  14. K. A. Radermacher, K. Wingler, P. Kleikers, S. Altenhofer, J. J. Hermans, C. Kleinschnitz, S. H. Hhw, The 1027th target candidate in stroke: Will NADPH oxidase hold up?. Exp Transl Stroke Med, Vol.4, No.1, pp.1-11, 2012. DOI: http://dx.doi.org/10.1186/2040-7378-4-11
  15. M. K. Park, M. G. Seong, M. K. Lee, Effects of TRPV1 in formalin-induced nociceptive behavior in the orofacial area of rats. The Korea Academia-Industrial cooperation Society, Vol. 15, No.1, pp.316-322, 2014. https://doi.org/10.5762/KAIS.2014.15.1.316
  16. Y. Sohn, H. S. Lee, H. J. Park, H. Lee, H. Lee, H. Choi, C. H. Jeong, Y. Bu, H. S. Jung, Angelicae Gigantis Radix regulates mast cell-mediated allergic inflammation in vivo and in vitro. Food Chem Toxicol, Vol.50, No.9, pp.2987-995, 2012. DOI: http://dx.doi.org/10.1016/j.fct.2012.06.001
  17. M. C. Kim, C. H. Lee, T. H. Yook, Effects of anti-inflammatory and Rehmanniae radix pharmacopuncture on atopic dermatitis in NC/Nga mice. J Acupunct Meridian Stud, Vol.6, No.2, pp.98-109, 2013. DOI: http://dx.doi.org/10.1016/j.jams.2012.10.007
  18. H. Y. Kim, Y. M. Han, Anti-inflammatory Effect of Paeoniflorigenone Isolated from Paeoniae Radix. Yakhak Hoeji, Vol.56, No.1, pp.20-25, 2012.
  19. S. K. Cho, O. l. Kwon, C. J. Kim, Anti-inflammatory and Analgesic Activities of the Extracts and Fractions of cnidii Rhizoma. Kor. J. Pharmacogn, Vol.27, No.3, pp.282-287, 1996.
  20. X. Y. Chen, K. Li, A. R. Light, K. Y. Fu, Simvastatin attenuates formalin-induced nociceptive behaviors by inhibiting microglial RhoA and p38 MAPK activation. J Pain, Vol. 14, No.311, pp.1310-9, 2013. DOI: http://dx.doi.org/10.1016/j.jpain.2013.05.011
  21. C. I. Svensson, M. Marsala, A. Westerlund, N. A. Calcutt, W. M. Campana, J. D. Freshwater, R. Catalano, Y. Feng, A. A. Protter, B. Scott, T. L. Yaksh, Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem, Vol.6 No.6, pp.1534-44, 2003. DOI: http://dx.doi.org/10.1046/j.1471-4159.2003.01969.x
  22. K. Li, T. Lin, Y. Cao, A. R. Light, K. Y. Fu, Peripheral formalin injury induces 2 stages of microglial activation in the spinal cord. J Pain, Vol.11, No.11, pp.1056-65, 2010. DOI: http://dx.doi.org/10.1016/j.jpain.2010.01.268
  23. S. Y. Kwon, J. H. Yeom, J. D. Joo, Ketamine reduces the induced spinal p38 MAPK and pro-inflammatory cytokines in a neuropathic rats. Korean J Anesthesiol, Vol. 66, No.1, pp.52-8, 2014. DOI: http://dx.doi.org/10.4097/kjae.2014.66.1.52
  24. K. Y. Su, C. Y. Yu, Y. P. Chen, K. F. Hua, Y. L. Chen, 3,4-Dihydroxytoluene, a metabolite of rutin, inhibits inflammatory responses in lipopolysaccharide-activated macrophages by reducing the activation of NF-$\kappa$B signaling. BMC Complement Altern Med, Vol.14, No.21. 2014.
  25. A. Feng, G. Zhou, X. Yuan, X. Huang, Z. Zhang, T. Zhang, Inhibitory effect of baicalin on iNOS and NO expression in intestinal mucosa of rats with acute endotoxemia. PLoS One, Vol.8, No.12, 2013. DOI: http://dx.doi.org/10.1371/journal.pone.0080997
  26. A. S. More, R. R. Kumari, G. Gupta, M. C. Lingaraju, V. Balaganur, N. N. Pathak, D. Kumar, D. Kumar, A. K. Sharma, S. K. Tandan, Effect of iNOS inhibitor S-methylisothiourea inmonosodium iodoacetate-induced osteoathritic pain: implication for osteoarthritis therapy. Pharmacol Biochem Behav, Vol.103, No.4, pp. 764-72. 2013. DOI: http://dx.doi.org/10.1016/j.pbb.2012.12.013
  27. C. Park, J. H. Lee, S. H. Lee, Protective Effect of Samul against Cisplatin in Primary Rat Organ of Corti Explant. Korean J. Oriental Physiology & Pathology, Vol.21, No.1, pp. 214-218, 2007.
  28. J. Kuroda, T. Ago, S. Matsushima, P. Zhai, M. D. Schneider, J. Sadoshima, NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A, Vol.107, No.35, pp.15565-70, 2010. DOI: http://dx.doi.org/10.1073/pnas.1002178107
  29. Y. S. Gwak, S. E. Hassler, C. E. Hulsebosch, Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain, Vol.154, No.9, pp.1699-708, 2013. DOI: http://dx.doi.org/10.1016/j.pain.2013.05.018
  30. W. Kallenborn-Gerhardt, K. Schroder, T. D. Del, R. Lu, K. Kynast, J. Kosowski, E. Niederberger, A. M. Shah, R. P. Brandes, G. Geisslinger, A. Schmidtko, NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J Neurosci, Vol.32, No.30, pp.10136-45, 2012. DOI: http://dx.doi.org/10.1523/JNEUROSCI.6227-11.2012
  31. H. Kobayashi, S. Chattopadhyay, K. Kato, J. Dolkas, S. Kikuchi, R. R. Myers, V. I. Shubayev, MMPs initiate Schwann cell-mediated MBP degradation and mechanical nociception after nerve damage. Mol Cell Neurosci, Vol.39, No.4, pp.619-27, 2008. DOI: http://dx.doi.org/10.1016/j.mcn.2008.08.008
  32. K. Lee, Y. S. Kim, H. Y. Ryu, H. K. Jo, J. J. An, U. K. Namgung, I. C. Seol, Regulatory Effects of Samultang on Axonal Recovery after Spinal Cord Injury in Rats. Oriental Physiology & Pathology, Vol. 20, No.5, pp.1303-1310, 2006.