DOI QR코드

DOI QR Code

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma

대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅

  • Jang, Doo Il (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Ihm, Tae Heon (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Trinh, Quang Hung (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Lee, Sang Baek (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Ramos, Henry J. (Plasma Physics Laboratory, National Institute of Physics, University of the Philippines Diliman)
  • 장두일 (제주대학교 생명화학공학과) ;
  • 임태헌 (제주대학교 생명화학공학과) ;
  • 쿠앙 흥 트린 (제주대학교 생명화학공학과) ;
  • 조진오 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과) ;
  • 이상백 (제주대학교 생명화학공학과) ;
  • 헨리 J. 라모스 (필리핀국립대학교 (딜리만 캠퍼스) 국립물리연구소 플라즈마물리연구실)
  • Received : 2014.01.27
  • Accepted : 2014.09.10
  • Published : 2014.10.10

Abstract

This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.

유러퓸-활성화 스트론튬 오쏘실리케이트($Sr_2SiO_4:Eu^{2+}$) 황색 형광체 분말의 소수성 코팅을 위하여 상압 유전체배리어 방전 플라즈마가 사용되었다. 전구물질은 헥사메틸다이실록세인(HMDSO), 톨루엔 및 n-헥세인이었으며, 운반기체는 아르곤이었다. 엑스선 회절분석 결과 플라즈마 코팅 처리 후에도 오쏘실리케이트의 격자구조는 변화가 없는 것으로 나타났다. 플라즈마 코팅된 형광체 분말의 특성은 주사전자현미경, 형광분광광도계, 접촉각 분석을 통해 조사되었다. HMDSO를 사용한 형광체 분말의 소수성 코팅시 물 접촉각은 $21.3^{\circ}$ (코팅 전)에서 $139.5^{\circ}$ (최대 $148.7^{\circ}$)로 증가되었고, 글리세롤 접촉각은 $55^{\circ}$ (코팅 전)에서 $143.5^{\circ}$ (최대 $145.3^{\circ}$)로 증가되었는데, 이 결과는 형광체 분말 표면에 소수성 박막 층이 잘 형성되었음을 나타낸다. 퓨리에변환적외선분광기 및 엑스선광전자분광기를 이용한 표면분석을 통해서도 형광체 분말에 소수성 박막 층이 잘 형성되어 있음을 알 수 있었다. HMDSO를 사용한 소수성 코팅 후 형광체의 광발광 효율이 증가하는 것으로 나타났으나, 톨루엔과 n-헥세인을 전구물질로 사용했을 때는 광발광 효율이 다소 저하되었다. 본 연구의 결과는 유전체배리어방전 플라즈마가 분말 형태인 형광체의 코팅에 이용될 수 있는 실용적인 방법임을 나타낸다.

Keywords

References

  1. J. H. Lee and Y. J. Kim, A correlation between a phase transition and luminescent properties of $Sr_2SiO_4:\;Eu^{2+}$ prepared by a flux method, J. Ceram. Proc. Res., 10, 81-84 (2009).
  2. S. Y. Jo, S. C. Cho, K. H. Lee, and H. S. Uhm, Hydrophobic coating of multi-walled carbon nanotubes by using a HMDSO glow plasma under low pressure, J. Korean Phys. Soc., 53, 641-645 (2008). https://doi.org/10.3938/jkps.53.641
  3. I. Topala, M. Asandulesa, D. Spridon, and N. Dumitrascu, Hydrophobic coating obtained in atmospheric plasma, IEEE Trans. Plasma Sci., 37, 946-950 (2009). https://doi.org/10.1109/TPS.2009.2016424
  4. D. I. Jang, J. O. Jo, R. Ko, S. B. Lee, and Y. S. Mok, Plasma-mediated hydrophobic coating on a silicate-based yellow phosphor for the enhancement of durability, Korean Chem. Eng. Res., 51, 214-220 (2013). https://doi.org/10.9713/kcer.2013.51.2.214
  5. H. Kakiuchi, H. Ohmi, T. Yamada, K. Yokoyama, K. Okamura, and K. Yasutake, Silicon oxide coatings with very high rates (>10 nm/s) by hexamethyldisiloxane-oxygen fed atmospheric-pressure VHF plasma: film-forming behavior using cylindrical rotary electrode, Plasma Chem. Plasma Proc., 32, 533-545 (2012). https://doi.org/10.1007/s11090-012-9363-2
  6. Z. Fang, Y. Qiu, and E. Kuffel, Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air, J. Phys. D: Appl. Phys., 37, 2261-2266 (2004). https://doi.org/10.1088/0022-3727/37/16/007
  7. A. David, Y. Puydt, L. Dupuy, S. Descours, F. Sommer, M. D. Tran, and J. Viard, Surface analysis for plasma treatment characterization. In: H. Rauscher, M. Perucca, and G. Buyle (eds.). Plasma Technology for Hyperfunctional Surfaces, 91-132, WILEY-VCH Verlag GmbH & Co. KGaA, Weinneim, Germany (2010).
  8. A. Fridman, Plasma Chemistry, 1st ed., 755-912, Cambridge University Press, NY, USA (2008).
  9. S. Yao, K. Madokoro, C. Fushimi, and Y. Fujioka, Experimental investigation on diesel PM removal using uneven DBD reactors, AIChE J., 53, 1891-1897 (2007). https://doi.org/10.1002/aic.11202
  10. R. Morent, N. Geyter, S. Vlierberghe, P. Dubruel, C. Leys, and E. Schacht, Organic-inorganic behavior of HMDSO films plasma-polymerized at atmospheric pressure, Surf. Coat. Technol., 203, 1366-1372 (2009). https://doi.org/10.1016/j.surfcoat.2008.11.008
  11. A. Vogelsang, A. Ohl, R. Foest, K. Schroder, and K.-D. Weltmann, Hydrophobic coatings deposited with an atmospheric pressure microplasma jet, J. Phy. D: Appl. Phys., 43, 485201-485223 (2010). https://doi.org/10.1088/0022-3727/43/48/485201
  12. K. H. Lee, S. C. Cho, S. Y. Jo, H. S. Uhm, C. U. Bang, and D. K. Lee, Hydrophobic coating of $Y_2O_3:Eu$ phosphors by using HMDSO/toluene plasma at low pressure and their wettability, J. Korean Phys. Soc., 53, 631-635 (2008). https://doi.org/10.3938/jkps.53.631
  13. Q. H. Trinh, S. B. Lee, and Y. S. Mok, Hydrophobic coating of silicate phosphor powder using atmospheric pressure dielectric barrier discharge plasma, AIChE J., 60, 829-838 (2014). https://doi.org/10.1002/aic.14356
  14. K. Su, J. V. DeGroot, Jr., A. W. Norris, and P. Y. Lo, Siloxane materials for optical applications, Proc. SPIE, 6029, 60291C (2006).
  15. J. V. DeGroot, Jr., A. Norris, S. O. Glover, and T. V. Clapp, Highly transparent silicone materials, Proc. SPIE, 5517, 116-123 (2004).
  16. K. G. Kostov, R. Y. Honda, L.M.S. Alves, and M.E. Kayama, Characteristics of dielectric barrier discharge reactor for material treatment, Brazilian J. Phys., 39, 322-325 (2009).
  17. Y. Qiao, X. Zhang, X. Ye, Y. Chen, and H. Guo, Photoluminescent properties of $Sr_2SiO_4:Eu^{3+}$ and $Sr_2SiO_4:Eu^{2+}$ phosphors prepared by solid-state reaction method, J. Rare Earths, 27, 323-326 (2009). https://doi.org/10.1016/S1002-0721(08)60243-4
  18. Q. H. Trinh, S. B. Lee, and Y. S. Mok, Hydrophobic coating of silicate phosphor powder using atmospheric pressure dielectric barrier discharge plasma, AIChE J., 60, 829-838 (2014). https://doi.org/10.1002/aic.14356
  19. D. K. Owens and R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 13, 1741-1747 (1969). https://doi.org/10.1002/app.1969.070130815
  20. R. Morent, N. D. Geyter, S. V. Vlierberghe, P. Dubruel, C. Leys, L. Gengembre, E. Schacht, and E. Payen, Deposition of HMDSO based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge, Prog. Org. Coat., 64, 304-310 (2009). https://doi.org/10.1016/j.porgcoat.2008.07.030
  21. R. Lamendola, R. d'Agostino, and F. Fracassi, Thin film deposition from Hexamethyldisiloxane fed glow discharges, Plasmas Polym., 2, 147-164 (1997). https://doi.org/10.1007/BF02766151
  22. Y. J. Yu, J. G. Kim, S. H. Cho, and J. H. Boo, Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices, Surf. Coat. Technol., 162, 161-166 (2003). https://doi.org/10.1016/S0257-8972(02)00582-0
  23. A. Kondyurin, O. Polonskyi, N. Nosworthy, J. Matousek, P. Hlidek, H. Biederman, and M. M. M. Bilek, Covalent attachment and bioactivity of horseradish peroxidase on plasma polymerized hexane coatings, Plasma Proc. Polym., 5, 727-736 (2008). https://doi.org/10.1002/ppap.200800010
  24. M. Goujon, T. Belmonte, and G. Henrion, OES and FTIR diagnostics of $HMDSO/O_2$ gas mixtures for $SiO_x$ deposition assisted by RF plasma, Surf. Coat. Technol., 188-189, 756-761 (2004). https://doi.org/10.1016/j.surfcoat.2004.07.048